라틴어 문장 검색

Praeter haec autem alia intervalla inveniri non possunt.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:27)
supra quae adeo nihil inveniri potest, ut ipsorum vj motuum formae ad intervallorum naturas et numerum componantur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:29)
Punctum igitur alio rursus intervallo a linea vincitur, ipsa scilicet, quae reliqua est, longitudine.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:40)
Sicut enim longitudini numerorum aliud intervallum, id est superficiem, ut latitudo ostenderetur, adiecimus, ita nunc latitudini si quis addat eam, quae alias altitudo alias crassitudo alias profunditas appellatur, solidum numeri corpus explebit.
(보이티우스, De Arithmetica, Liber secundus, De numeris solidis. 1:2)
Ac de solidis quidem, quae pyramidis formam obtinent, aequaliter crescentibus et a propria velut radice multiangula figura progredientibus dictum est. Est alia rursus quaedam corporum solidorum ordinabilis compositio, eorum qui dicuntur cybi vel asseres vel laterculi vel cunei vel spherae vel parallelepipeda, quae sunt, quotiens superficies contra se sunt, et ductae in infinitum nunquam concurrent.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:1)
Hos ergo duos ex ipsius latere si multiplices aequaliter, cybi forma nascetur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:5)
Laterculi sunt, qui fiunt ex aequalibus aequaliter in minus.
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:4)
Asseres vero et ipsae quidem figurae sunt solidae sed hoc modo, ut ex aequalibus aequaliter ducantur in maius.
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:5)
Sphenisci vero, quos cuneolos superius appellavimus, hi sunt, qui ex inaequalibus inaequaliter ducti per inaequalia creverunt, cybi vero, qui ex aequalibus aequaliter per aequalia producti sunt.
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:9)
Est enim circulus posito quodam puncto et alio eminus defixo illius puncti, qui eminus fixus est, aequaliter distans a primo puncto circumductio et ad eundem locum reversio, unde moveri coeperat.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:9)
Ipsi vero cybi, qui quamquam tribus intervallis sublati sint, tamen propter aequalem multiplicationem participant inmutabilis substantiae eiusdemque naturae sunt socii, non aliorum quam inparium coacervatione producuntur, nunquam vero parium.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 1:1)
unde duo tantum in his intervalla sunt constituta, a primo scilicet ad medium et a medio ad tertium.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:4)
unde formae solidae tria intervalla dicuntur habere.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:6)
Est enim unum intervallum a primo ad secundum et a secundo ad tertium et a tertio ad quartum, quae est scilicet postrema distantia.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:7)
Recte igitur et planae figurae duobus intervallis et solidae tribus contineri dicuntur.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:8)

SEARCH

MENU NAVIGATION