라틴어 문장 검색

Nam tempora oscillationum pyxidis plenae minora sunt quam tempora oscillationum pyxidis vacuae, & propterea resistentia pyxidis plenae in externa superficie major est, pro ipsius velocitate & longitudine spatii oscillando descripti, quam ea pyxidis vacuae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 106:8)
) si distantiae inter undarum loca altissima A, C, E, & infima B, D, F aequentur duplae penduli longitudini, partes altissimae A, C, E tempore oscillationis unius evadent infimae, & tempore oscillationis alterius denuo ascendent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 30:10)
Jam si area Oualis per finitam aequationem inveniri potest, invenietur etiam per eandem aequationem distantia puncti a polo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:4)
cum tempora quibus corpora describant singulas arcuum partes correspondentes sint ut tempora oscillationum totarum, erunt velocitates ad invicem in correspondentibus oscillationum partibus, ut vires motrices & tota oscillationum tempora directe & quantitates materiae reciproce:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 3:6)
ternae rectarum & curvarum tertiae potestatis per aequationes trium, quaternae rectarum & curvarum quartae potestatis per aequationes dimensionum quatuor, & sic in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:17)
Unde cum in Oscillationibus inaequalibus describantur aequalibus temporibus arcus totis Oscillationum arcubus proportionales, habentur ex datis temporibus & velocitates & arcus descripti in Oscillationibus universis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:15)
Sin AD & DG (vel earum alterutra) ascendebant ad duas dimensiones in aequatione prima, ascendent itidem ad & dg ad duas in aequatione secunda.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:13)
Est ergo tempus totum in circulo HKM, Oscillationi in una Cycloide respondens, ad tempus totum in circulo hkm Oscillationi in altera Cycloide respondens, ut semiperiferia HKM ad medium proportionale inter hanc semiperiferiam & semiperiferiam circuli alterius hkm, id est in dimidiata ratione diametri HM ad diametrum hm, hoc est in dimidiata ratione perimetri Cycloidis primae ad perimetrum Cycloidis alterius, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 35:11)
Ideoque cum punctum M, ubi corpus versatur in medio oscillationis loco O, incidat circiter in punctum P, & priore oscillationis parte versetur inter A & P, posteriore autem inter P & a, utroque in casu aequaliter a puncto P in partes contrarias errans:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:20)
Hinc ex oscillationum temporibus, in Medio resistente in arcubus inaequalibus factarum, cognosci possunt tempora oscillationum in ejusdem gravitatis specificae Medio non resistente.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 22:2)
AEquationes maximae Nodorum & Augis Satellitis cujusque fere sunt ad aequationes maximas Nodorum & Augis Lunae respectivè, ut motus Nodorum & Augis Satellitum, tempore unius revolutionis aequationum priorum, ad motus Nodorum & Apogaei Lunae tempore unius revolutionis aequationum posteriorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 10:10)
oscillatione mediocri a Nodo descriptus, ad arcum totum 67-1/8, oscillatione mediocri a centro Globi descriptum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:9)
Et propterea si oscillationes in aqua in ea ratione accelerarentur ut motus pendulorum in Medio utroque fierent aequiveloces, numerus oscillationum 1-1/5 in aqua, quibus motus idem ac prius amitteretur (ob resistentiam auctam in ratione illa duplicata & tempus diminutum in ratione eadem simplici) diminueretur in eadem illa ratione 44 ad 41, adeoque evaderet 1-1/5 in 41/44 seu 123/110.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 97:4)
Quantitates materiae in corporibus funependulis, quorum centra oscillationum a centro suspensionis aequaliter distant, sunt in ratione composita ex ratione ponderum & ratione duplicata temporum oscillationum in vacuo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 2:1)
Unde etiam intersectiones Sectionum Conicarum & curvarum tertiae potestatis, eo quod sex esse possunt, simul prodeunt per aequationes sex dimensionum, & intersectiones duarum curvarum tertiae potestatis, quia novem esse possunt, simul prodeunt per aequationes dimensionum novem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:14)

SEARCH

MENU NAVIGATION