라틴어 문장 검색

dein Luna pergente ab n ad q, linea PD cadet extra circulum, & aream nqe ad circuli tangentem qe terminatam describet;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:8)
Nam si PF tangat circulum in P, & producta occurrat TN in F, & pf tangat Ellipsin in p & producta occurrat eidem TN in f, conveniant autem hae Tangentes in axe TQ ad Y;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:1)
Igitur cum, in data Nodorum positione, summa omnium arearum pDdm, quo tempore Luna pergit à Quadratura ad locum quemvis m, sit area mpQEd, quae ad Ellipseos Tangentem QE terminatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 6:2)
) ut tangens DG ad circuli BED circumferentiam totam, atque angulus iste ad motum medium Nodorum addatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:16)
Invenire lineam curvam generis Parabolici, quae per data quotcunque puncta transibit.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 28:1)
Jungatur enim EO secans arcum Parabolicum ABC in Y, & erit area curvilinea AEY ad aream curvilineam ACY ut AE ad AC quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:1)
area quam Radio ad punctum S ducto describeret, aequalis esset areae Parabolicae ASC[mu].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:2)
Ideoque contentum sub longitudine in Tangente descripta & longitudine S[mu], esset ad contentum sub longitudinibus AC & SM, ut area ASC[mu] ad triangulum ASCM, id est ut SN ad SM.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:3)
Quare AC est ad longitudinem in tangente descriptam ut S[mu] ad SN.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:4)
Cum autem velocitas Cometae in altitudine SP sit ad velocitatem in altitudine S[mu] in dimidiata ratione SP ad S[mu] inversè, id est in ratione S[mu] ad SN, longitudo hac velocitate eodem tempore descripta, erit ad longitudinem in Tangente descriptam ut S[mu] ad SN.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:5)
Igitur AC & longitudo hac nova velocitate descripta, cum sint ad longitudinem in Tangente descriptam in eadem ratione, aequantur inter se. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:6)
In longitudine media tB sumatur utcunque punctum B, & inde versus Solem S ducatur linea BE, quae sit ad Sagittam tV, ut contentum sub SB & St quadrato ad cubum hypotenusae trianguli rectanguli, cujus latera sunt SB & tangens latitudinis Cometae in observatione secunda ad radium tB.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:2)
Ad AC bisectam in I erigantur perpendicula AM, CN, IO, quarum AM & CN sint tangentes latitudinum in observatione prima ac tertia ad radios TA & [tau][alpha].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 7:1)
Ad puncta X & Z erigantur tangentes latitudinum Cometae ad radios TX & [tau]Z;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 8:6)
Praeterea cum Cl. Flamstedius Cometam, qui Mense Novembri apparuerat, eundem esse cum Cometa mensium subsequentium, literis ad me datis aliquando disputaret, & Trajectoriam quamdam ab orbe hocce Parabolico non longe aberrantem delinearet, visum est loca Cometae in hoc orbe Mense Novembri computare, & cum Observationis conferre.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 29:1)

SEARCH

MENU NAVIGATION