라틴어 문장 검색

Habet autem proprium huiusmodi medietas, quod in omni dispositione secundum hanc proportionalitatem terminorum differentiae in eadem proportione contra se sunt, qua fuerint ipsi termini, quorum sunt ipsae differentiae.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 5:1)
Haec autem proportionalitas et in aliis omnibus vel superparticularibus vel superpartientibus invenitur huiusmodi proprietate in omnibusconservata, ut in continua proportione, quod fit sub extremitatibus, si tres fuerint termini, hoc a medietate multiplicata consurgat.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:1)
vel si sit in quattuor terminis disiuncta proportio, quod fit sub utrisque extremitatibus, id duarum medietatum multiplicatione concrescat, ut, si sint ij iiij viij xvj, quod fit ex bis xvj, id ex quater viij reddatur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:3)
Quarta vero est proprietas huiusce medietatis, quod vel in maioribus vel in minoribus terminis aequales semper proportiones sunt.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:6)
Atque ideo arithmetica quidem rei publicae comparatur, quae paucis regitur, idcirco quod in minoribus eius terminis maior proportio sit. Musicam vero medietatem optimatium dicunt esse rempublicam ideo, quod in maioribus terminis maior proportionalitas invenitur.
(보이티우스, De Arithmetica, Liber secundus, Quae medietates quibus rerum publicarum statibus comparentur 1:1)
Omnes enim planae figurae, quae nulla altitudine crescunt, una tantum medietate geometrica continuantur;
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:2)
Si vero fuerint cybi, duas tantum habebunt medietates, ubi tertia inveniri non poterit secundum geometricam scilicet proportionem;
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:5)
Hoc autem idcirco evenit, quod singula latera singulorum tetragonorum efficiunt senariam medietatem.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:12)
In his quoque eadem laterum ratio est. Namque exuno cybo, qui propinquior est, una medietas duo latera colligit, ex alternatim vero posito unum.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:17)
Medietas igitur, quae iuxta octonarium est, id est xij, mutuatur duo latera ex propinquo sibi octonario et aliud unum latus ex altrinsecus posito xxvij cybo.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:24)
Sed nunc ad tertiam medietatem redeundum est.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:35)
Armonica autem medietas est, quae neque eisdem differentiis nec aequis proportionibus constituitur, sed illa, in qua quemadmodum maximus terminus ad parvissimum terminum ponitur, sic differentia maximi et medii contra differentiam medii atque parvissimi comparatur;
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 1:1)
ut si sint iij iiij vj vel si ij iij vj. Senarius enim quaternarium sua tertia parte superat, id est duobus, quaternarius vero ternarium sua quartaparte supervenit, id est uno, et senarius ternarium sua medietate, id est tribus, ternarius vero binarium sua parte tertia, id est unitate transcendit.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 1:2)
Habet autem proprietatem, quemadmodum dictum est, contrariam arithmeticae medietati.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:1)
Sed maior est proportio sesqualtera a sesquitertia tantum, quantum pars tertia medietate transcenditur.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:5)

SEARCH

MENU NAVIGATION