라틴어 문장 검색

in infinitum, & rectangula illa evadent aequalia areae Hyperbolicae zthn, adeoque huic areae proportionalis est differentia Aa - Ff. Sumantur jam distantiae quaelibet, puta SA, SD, SF in Progressione Musica, & differentiae Aa - Dd, Dd - Ff erunt aequales;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:30)
Si resistentia in arcu B esset ad resistentiam in arcu A ut rectangulum AB ad A quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 21:5)
ideoque summa omnium MN × ½aB, id est Aa × ½aB, aequalis erit summae omnium Dd × DR, id est areae BRrSa, quam rectangula omnia Dd × DR seu DRrd componunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:18)
Ergo rectangulum Aa × ½aB seu AaO, cum sit aequale areae BRSa, erit etiam aequale areae BKTa quamproxime. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:25)
& Ellipsis, centro O, semiaxibus OB, OV descripta, figuram aBKVT, eique aequale rectangulum Aa × BO, aequabit quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:8)
Quod si resistentia DK sit in duplicata ratione velocitatis, figura BKTVa Parabola erit verticem habens V & axem OV, ideoque aequalis erit duabus tertiis partibus rectanguli sub Ba & OV quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 46:1)
In superiore Propositione rectangulum sub recta ½aB & arcuum illorum CB, Ca differentia Aa, aequalis erat areae BKT.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:2)
hoc est in ratione resistentiae, adeoque est ut longitudo aB & resistentia conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:4)
ideoque (cum distantiae particularum systematis unius sint ad distantias correspondentes particularum alterius, ut diameter particulae vel partis in systemate priore ad diametrum particulae vel partis correspondentis in altero, & quantitates materiae sint ut densitates partium & cubi diametrorum) resistentiae sunt ad invicem ut quadrata velocitatum & quadrata diametrorum & densitates partium Systematum. Q. E. D. Posterioris generis resistentiae sunt ut reflexionum correspondentium numeri & vires conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 8:4)
Et vires reflexionum sunt ut velocitates & magnitudines & densitates partium correspondentium conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 8:6)
Et conjunctis his omnibus rationibus, resistentiae partium correspondentium sunt ad invicem ut quadrata velocitatum & quadrata diametrorum & densitates partium conjunctim. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 8:8)
Jam vero pondus aquae, quod vas & Globus conjunctim sustinent, est pondus aquae totius in vase, praeter partem illam quae aquam defluentem accelerat, & ad ejus motum generandum sufficit, quaeque, per Propositionem superiorem, aequalis est ponderi columnae aquae cujus basis aequatur spatio inter Globum & canalem per quod aqua defluit, & altitudo eadem cum altitudine aquae supra fundum vasis, per lineam SR designata.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 57:1)
Vasis igitur fundum & Globus conjunctim sustinent pondus aquae totius in vase sibi ipsis perpendiculariter imminentis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 57:2)
& idcirco resistentia penduli in aqua est ad resistentiae partem illam in aere quae quadrato velocitatis proportionalis est, quaeque sola in motibus velocioribus consideranda venit, ut 85½ ad 64-3/14 & 535 ad 123/110 conjunctim, id est ut 637 ad 1.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:5)
Quare cum tempora, quibus aequalia corpora per aequalia spatia impelluntur, sint reciproce in dimidiata ratione virium, erit tempus vibrationis unius urgente vi illa Elastica, ad tempus vibrationis urgente vi ponderis, in dimidiata ratione V × EG ad HK × A, atque adeo ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione V × EG ad HK × A & PO ad A conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:8)

SEARCH

MENU NAVIGATION