라틴어 문장 검색

& a punctis C, G, g, ad planum horizontale AK demittantur perpendicula CB, GD, gd, quorum GD ac gd tangenti occurrant in F & f.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:9)
adeo positionem Tangentis CF semper determinat:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 70:7)
Terminus tertius, qui hic est nnoo ÷ 2e^3 designabit lineolam FG, quae jacet inter Tangentem & Curvam, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 70:9)
Unde obiter patet usus non contemnendus harum Serierum in solutione Problematum, quae pendent a Tangentibus & curvatura Curvarum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 70:15)
Sic in Problemate jam solvendo, si scribantur [sqrt]1 + aa ÷ ee seu n ÷ e pro [sqrt]{1 + QQ}, nn ÷ 2e^3 pro R, & ann ÷ 2e^3 pro S, prodibit Medii densitas ut a ÷ ne, hoc est (ob datam n) ut a ÷ e seu OB ÷ BC, id est ut Tangentis longitudo illa CT, quae ad semidiametrum OL ipsi AK normaliter insistentem terminatur, & resistentia erit ad gravitatem ut a ad n, id est ut OB ad circuli semidiametrum OK, velocitas autem erit ut [sqrt]2BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:1)
Igitur si corpus C certa cum velocitate, secundum lineam ipsi OK parallelam, exeat de loco L, & Medii densitas in singulis locis C sit ut longitudo tangentis CT, & resistentia etiam in loco aliquo C sit ad vim gravitatis ut OB ad OK;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:2)
densitas Medii in G est reciproce ut tangens GT, & velocitas ibidem ut [sqrt]{GTq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 91:2)
& corpus de loco quovis A, secundum rectam AH productam, justa cum velocitate projectum, describet hanc Parabolam, si modo densitas Medij, in locis singulis G, sit reciproce ut tangens GT.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:5)
numerus revolutionum quas corpus intra circulorum circumferentias complere potest, est ut PS ÷ OS, sive ut Tangens anguli quem Spiralis continet cum radio PS;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 14:3)
Fluidi homogenei & immoti, quod in vase quocunque immoto clauditur & undique comprimitur, partes omnes (seposita Condensationis, gravitatis & virium omnium centripetarum consideratione) aequaliter premuntur undique, & absque omni motu a pressione illa orto permanent in locis suis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 4:1)
Si Fluidi Sphaerici, & in aequalibus a centro distantiis homogenei, fundo sphaerico concentrico incumbentis partes singulae versus centrum totius gravitent;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 15:1)
Bisecetur AB in C, & punctum C repraesentabit infimum Cycloidis punctum, & erit CD ut vis a gravitate oriunda, qua corpus in D secundum Tangentem Cycloidis urgetur, eamque habebit rationem ad longitudinem Penduli quam habet vis in D ad vim gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:2)
Quod si figura DNFB ejusmodi sit ut, si ab ejus puncto quovis N ad axem AB demittatur perpendiculum NM, & a puncto dato G ducatur recta GR quae parallela sit rectae figuram tangenti in N, & axem productum secet in R, fuerit MN ad GR ut GR cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 34:1)
Si vas Sphaericum Fluido homogeneo quiescente plenum a vi impressa moveatur in directum, motuque progessivo semper accelerato ita pergat ut interea non moveatur in orbem:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 65:1)
Nam per Lemma superius si vas Sphaericum, rigidum, Fluidoque homogeneo quiescente plenum, motu paulatim impresso progrediatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 68:1)

SEARCH

MENU NAVIGATION