라틴어 문장 검색

tetragonos quoque ad eundem modum considerari manifestum est. Nam quod eorum compositio et coniunctio ex inparibus fit, inmutabili eos naturae pronuntiabo coniunctos.
(보이티우스, De Arithmetica, Liber secundus, Quod principaliter eiusdem quidem sit substantiae unitas, secundo vero loco inpares numeri, tertio quadrati, et quod principaliter dualitas alterius sit substantiae, secundo vero loco pares numeri, tertio parte altera longiores 1:3)
Illud igitur perspiciendum est, quod, si idem tetragoni et parte altera longiores disponantur, ita ut alternatim sibi permixti sint, tanta in his est coniunctio, ut alias sibi in eisdem proportionibus communicent, discrepent autem differentiis, alias vero differentiis pares sint, proportionibus distent.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:1)
Disponantur enim in ordinem idem illi superiores tetragoni et parte altera longiores ab uno:
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:2)
j ij iiij vj viiij xij xvj xx xxv xxx. Ergo in superiore formula hoc maxime intuendum est. Namque inter j, qui est tetragonus, et ij dupla proportio est;
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:3)
In sequentibus etiam eadem ratio speculabitur et semper alternatim, nunc quidem eaedem proportiones, aliae differentiae sunt, nunc autem ordine permutato eisdem differentiis aliae proportiones, semperque, in quibus differunt, secundum naturalis numeri ordines tetragoni et parte altera longiores sese superabunt, tantum quod geminatis summulis naturalis numeri fit progressio.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:13)
Nos enim ipsas summas tetragonorum et parte altera longiorum geminavimus ad primas secundasque proportiones.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:15)
binarii vero medietas.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:3)
Eodemque modo inter ij et iiij tantum ij sunt, qui binarii totum sunt, quaternarii medietas.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:4)
Inter quaternarium vero et senarium idem ij sunt, ad quaternarium medietas, ad senarium pars tertia iij vero, qui sequuntur, qui inter vj et viiij constituti sunt medii, sunt quidem senarii dimidium, pars vero tertia novenarii.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:5)
Si igitur in utrisque versibus primos aspicias, singulos quos invenis, quoniam tetragoni sunt, in inpari loco sunt constituti, quoniam primi sunt.
(보이티우스, De Arithmetica, Liber secundus, Probatio quadratos eiusdem esse naturae 4:1)
Et si nonum locum rursus adspicias, tetragonos pernotabis cclvj et mmmmmmdlxj;
(보이티우스, De Arithmetica, Liber secundus, Probatio quadratos eiusdem esse naturae 4:5)
Confessae quidem et apud antiquiores notae, quaeque ad Pythagorae vel Platonis vel Aristotelis scientiam pervenerunt, hae tres medietates sunt:
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:1)
At vero posteri propter denarii numeri perfectionem, quod erat Pythagorae conplacitus, medietates alias quattuor addiderunt, ut in his proportionalitatibus denariae quantitatis corpus efficerent.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:4)
In his autem quantitatibus medietas ista versatur, inque his speculanda est, in quibus a se ipsis termini differunt.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:2)
Quid autem esset differentia terminorum superius definitum est. Hanc autem esse arithmeticam medietatem numerorum, ipsa ratio declarabit, quoniam eius proportio in numeri quantitate consistit.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:3)

SEARCH

MENU NAVIGATION