라틴어 문장 검색

Ergo si in unum incurrat vicissim ista subtractio, primi contra se necessario numeri dicentur et nulla alia mensura nisi sola unitate coniuncti.
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 1:3)
quos si duo rursus septenario dempserim, supersunt v, atque ex his alios duos, iij rursus exuberant, quos alio binario deminutos sola unitas superstes egreditur.
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 2:5)
et post unitatem ultimum binarium numerum adgregaveras.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:2)
Sed hic primus et incompositus non est, habet enim generis alterius partem super illam, quae est a se ipsa denominata, quintam decimam scilicet unitatem.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:14)
Semel enim j solam efficit unitatem, quae partibus suis aequalis est potentia solum, ceteris etiam actu atque opere perfectis.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:19)
Recte igitur unitas propria virtute perfecta est, quod et prima est et incomposita et per se ipsam multiplicata sese ipsam conservat.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:20)
Ad primum enim, id est unitatem, ij duplus, iij triplus, iiij quadruplus atque ita in ordinem progredientes omnes texuntur multiplices quantitates.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:5)
i ij iij iiij v vj vij viij viiij x xj xij xiij xiiij xv xvj xvij xviij xviiij xx. Horum ergo si primum sumas parem, id est ij, primi duplus erit, id est unitatis;
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:4)
Triplices autem nascuntur, si in eadem dispositione naturali duo semper intermittantur, et qui post duos sunt, ad naturalem numerum comparentur, excepto ternario, qui, ut unitatis triplus sit, solum binarium praetermittit.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:8)
Si igitur duo prima latera propositae formulae, quae faciunt angulum ab uno ad x et x procedentia, respiciantur et his subteriores ordines comparentur, qui scilicet a iiij angulum incipientes in vicenos terminum ponunt, duplex, id est prima species multiplicitatis ostenditur ita, ut primus primum sola superet unitate, ut duo unum, secundus secundum binario supervadat, ut quaternarius binarium, tertius tertium tribus, ut senarius ternarium, quartus quartum quaternarii numerositate transcendat, ut viij quaternarium, et per eandem cuncti sequentiam sese minoris pluralitate praetereant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:1)
Si quis autem quarti anguli terminum, qui xvj numeri quantitate notatus est et longitudinem latitudinemque in quadragenos determinat, velit superioribus comparare, per x litterae formam proportione conlata, quadrupli multitudinem pernotabit, hisque est ordinabilis super se progressio, ut primus primum tribus superet, ut iiij unitatem, secundus secundum senario vincat, ut viij binarium, tertius tertium novenario transeat, ut duodenarius ternarium, et sequentes summulae trium se semper adiecta quantitate transsiliant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:5)
Sin vero omnes in ordinem quadrupli disponantur, hi qui naturalis numeri quadrupli sunt, ut unitatis quadruplus, et duorum triumque et quattuor atque quinarii et ceterorum sese sequentium, et ad eos aptentur a novenario numero inchoantes semper sese novenario praecedentes, tunc duplicis sesquiquartae proportionis forma texetur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 11:1)
Sint enim nobis tres aequales termini, id est tres unitates, vel ter bini vel ter terni vel ter quaterni vel quantos ultra libet ponere.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:5)
Quare pronuntiandum est, nec ulla trepidatione dubitandum, quod quemadmodum per se constantis quantitatis unitas principium et elementum est, ita et ad aliquid relatae quantitatis aequalitas mater est. Demonstravimus enim, quod hinc et eius procreatio prima foret et in eam rursus postrema solutio.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 5:2)
Omnes enim multiplices tantarum similium sibimet proportionum principes erunt, quoto ipsi loco ab unitate discesserint.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:1)

SEARCH

MENU NAVIGATION