라틴어 문장 검색

Revolvantur jam corpora minora P, Q circa maximum S in planis diversis, & vis LM, agendo secundum lineam PS in plano Orbitae PAB sitam, eundem habebit effectum ac prius, neq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 52:2)
Sint AHKB, ahkb aequales duae superficies Sphaericae, centris S, s, diametris AB, ab descriptae, & P, p corpuscula sita extrinsecus in diametris illis productis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 8:1)
XXXI,) & propterea eadem est ac si vis tota attrahens manaret de corpusculo unico sito in centro hujus Sphaerae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 28:2)
Et si ex corpusculis innumeris p componatur Sphaera nova intra Sphaeram priorem ACBD sita, probabitur ut prius, quod attractio, sive simplex Sphaerae unius in alteram, sive mutua utriusq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 54:2)
in superficie conica sitas exercita, ut haec ipsa superficiei pars annularis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 67:5)
× PS ÷ PE & vis quam Sphaerae particula sita in axe ad distantiam PE exercet in corpusculum P conjunctim:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 69:2)
Nam si corpora distinguantur in particulas, quae sint totis proportionales & in totis similiter sitae;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 9:1)
Talia autem vitra Objectiva vitris Ellipticis & Hyperbolicis praeferenda sunt, non solum quod facilius & accuratius formari possint, sed etiam quod penicillos radiorum extra axem vitri sitos accuratius refringant.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 29:4)
& quod in Praxi mechanica sufficit circulum semel describere, deinde regulam interminatam CH ita applicare ad punctum C, ut ejus pars FH, circulo & rectae FK interjecta, aequalis sit ejus parti CE inter punctum C & rectam HK sitae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 102:14)
quoniam particularum situs sunt similes & vires proportionales, vires totae quibus particulae correspondentes agitantur, ex viribus singulis agitantibus (per Legum Corollarium secundum) compositae, similes habebunt determinationes, perinde ac si centra inter particulas similiter sita respicerent;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 3:6)
Hinc si corpora duo quaevis, quae similia sint & ad Systematum particulas correspondentes similiter sita, inter ipsas temporibus proportionalibus similiter moveri incipiant, sintque eorum densitates ad invicem ut densitates correspondentium particularum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 4:2)
& earum duae, quae caeteris majores sint, & sibi mutuo in utroque Systemate correspondeant, secundum lineas similiter sitas simili cum motu utcunque moveri incipiant:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 5:3)
Igitur si Systematum duorum partes omnes quiescant inter se, exceptis duabus, quae caeteris majores sint & sibi mutuo correspondeant inter caeteras similiter sitae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 21:2)
Et quoniam Medium ibi densius est quam in spatiis hinc inde versus KL & NO, dilatabit sese tam versus spatia illa KL, NO utrinque sita, quam versus pulsuum rariora intervalla; eoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 10:6)
dein reditu suo sinent partes compressas recedere & sese expandere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 14:3)

SEARCH

MENU NAVIGATION