라틴어 문장 검색

Designet igitur F aream foraminis, A altitudinem aquae foramini perpendiculariter incumbentis, P pondus ejus, AF quantitatem ejus, S spatium quod dato quovis tempore T in vacuo libere cadendo describeret, & V velocitatem quam in fine temporis illius cadendo acquisierit:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 48:1)
quoniam aqua velocitate V ascenderet ad altitudinem illam S de qua deciderat;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 49:2)
Nam stantibus quae in Propositione superiore constructa sunt, si linea quaevis Physica, EF singulis vibrationibus describendo spatium PS, urgeatur in extremis itus & reditus cujusque locis P & S, a vi Elastica quae ipsius ponderi aequetur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:1)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
adeoque ex aequo, vis qua lineola EG in locis suis P & S urgetur, est ad lineolae illius pondus ut HK × A ad V × EG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:7)
Sit AFL cylindrus uniformiter circa axem S in orbem actus, & circulis concentricis BGM, CHN, DIO, EKP, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:1)
Sit AFL sphaera uniformiter circa axem S in orbem acta, & circulis concentricis BGM, CHN, DIO, EKP, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 16:2)
Quinetiam si in praefata Ellipseos revolutione punctum quodvis N describat circulum NM, secantem parallelos Ff, Dd in locis quibusvis R, T, & aequatorem AE in S;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 18:16)
erit CN altitudo Maris in locis omnibus R, S, T, sitis in hoc circulo.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 18:17)
Designet Q Solem, S Terram, P Lunam, PADB orbem Lunae.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 25:1)
Quoniam figura orbis Lunaris ignoratur, hujus vice assumamus Ellipsin DBCA, in cujus centro S Terra collocetur, & cujus axis major DC Quadraturis, minor AB Syzygiis interjaceat.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:1)
Rationes autem ineundo invenio quod differentia inter curvaturam orbis Cpa in vertice a, & curvaturam circuli centro S intervallo SA descripti, sit ad differentiam inter curvaturam Ellipseos in vertice A & curvaturam ejusdem circuli, in duplicata ratione anguli CSP ad angulum CSp;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:8)
& curvatura circuli illius ad curvaturam circuli centro S intervallo SC descripti ut SC ad SA;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:10)
Et hoc pacto anguli omnes circa centrum S dilatantur in eadem ratione, & Variatio quae secus esset 32'. 31".
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:15)
Designet S Solem, T Terram, P Lunam, NPn Orbem Lunae, Npn vestigium Orbis in plano Eclipticae;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 50:1)

SEARCH

MENU NAVIGATION