라틴어 문장 검색

Si autem ipse, vel alius numerus par, dividatur in aequales, ut oconarius in iiij et iiij, et item per inaequales, ut idem octonarius in v et iij, in illa quidem divisione utraeque partes pares factae sunt, in hac utraque inpares extiterunt;
(보이티우스, De Arithmetica, Liber primus, Alia secundum antiquiorem modum divisio paris et inparis 1:6)
bis iij, bis v, bis vij, bis viiij, bis xj, et dienceps, ex quibus nascuntur hi:
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:4)
si viij in v fiunt xl, si viij in vii collegentur lvj atque ad hunc modum si omnes inferiores duplices a superioribus multiplicentur, vel si superiores eosdem inferiores multiplicent, cunctos, qui nati fuerint, inpariter pares invenies.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 5:4)
Et primus quidem et incompositus est, qui nullam aliam partem habet nisi eam, quae a tota numeri quantitate denominata sit, ut ipsa pars non sit nisi untias, ut sunt iij v vij xj xiij xvij xviiij xxiij xxviiij xxxj.
(보이티우스, De Arithmetica, Liber primus, De prime et incompositio 1:1)
eodemque modo quinarii sola quinta pars est et haec untias, atque idem in singulis consequens repperietur.
(보이티우스, De Arithmetica, Liber primus, De prime et incompositio 1:3)
Nam quae in viiij tertia est, in xxv non est, et quae in xxv quinta est, in novenario non est. Ergo hi per naturam utrique secundi et compositi sunt, comparati vero ad se invicem primi incompositique redduntur, quod utrosque nulla alia mensura metitur, nisi unitas, quae ab utrisque denominata est;
(보이티우스, De Arithmetica, Liber primus, De eo, qui per se secundus et compositus est, ad alium primus et incompositus 1:4)
nam in novenario nona est, in xxv vicesima quinta.
(보이티우스, De Arithmetica, Liber primus, De eo, qui per se secundus et compositus est, ad alium primus et incompositus 1:5)
Sin vero quinarius numerus, qui in secundo loco est constitutus, velit quis, cuius prima ac deinceps mensura sit, invenire, transmissis iiij inparibus quintus ei, quem metiri possit, occurrit.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 3:1)
Metientur autem, si per pares numeros a binario inchoantes positos inter se inpares rata intermissione transsiliant, ut primus duo, secundus iiij, tertius vj quartus viij quintus x, vel si locos suos conduplicent et secundum duplicationem terminos intermittant, ut ternarius qui primus est numerus et unus -- omnis enim primus unus est -- bis locum suum multiplicet faciatque bis unum;
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 5:2)
IIJ enim et v si multiplices, iij tertio viiij facient, et quinquies v reddent xxv. His igitur nulla est communis mensurae cognatio.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 6:11)
Est enim una, quae vocatur multiplex, alia superparticularis, tertia superpartiens, quarta multiplex superparticularis, quinta multiplex superpartiens.
(보이티우스, De Arithmetica, Liber primus, De speciebus maioris quantitatis et minoris. 1:2)
rursus post iiij et v sunt vj., qui secundi numeri, id est duorum, triplus est;
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:10)
Inter viiij enim et xij sunt x et xj. Secundum hunc modum quarta dispositio iij, quinta iiij intermittit.
(보이티우스, De Arithmetica, Liber primus, De quodam utili ad cognitionem superparticularibus accidente. 1:8)
si vero xj ad v, duplex sesquiquintus;
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 2:4)
Ut enim quinarii subiectam notulam fingant de v, vel denarii, quam descripsimus, id est de x, et alias huiusmodi non natura posuit, sed usus adfinxit.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:7)

SEARCH

MENU NAVIGATION