라틴어 문장 검색

Et secundum quantitatem quoque numeri eodem modo est. Quantum enim tres superant binarium, tantum binarius unitatem, et quanto unus a duobus minor est, tanto binarius a ternario superatur.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:16)
Hi namque omnes quaternaria sese numerositate transcendunt, quod idcirco contingit, quoniam primi qui positi sunt, id est eorum fundamenta, binario se numero praecedebant, quos quoniam per binarium multiplicavimus, in quaternarium faciunt summam.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:8)
Nam in hac dispositione ij iiij v quaternarius ad binarium duplus est. Sed inter quaternarium et binarium ij sunt, inter quaternarium vero et maiorem terminum, id est quinque, j. Et ij ad j dupli sunt.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:3)
quibus in aequatione scriptis, & aequatione prodeunte resolutâ, obtinetur x aequalis 0,0072036, & inde semidiameter CS fit 1,0072, & semidiameter AS 0,9928, qui numeri sunt ut 69-11/12 & 68-11/12 quam proximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 42:12)
Namque minorem, id est binarium, uno superat, id est ipsius medietate binarii, a quaternario vero uno relinquitur, quae pars quaternarii quarta est. Recte igitur dictum est, medium terminum in huiusmodi medietate eadem sui parte et minorem vincere et a maiore superari, sed non eisdem partibus vel minoris minorem transgredi vel maioris a maiore transcendi.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:12)
Ponamus primo quod corpus ascendit, centroque D & semidiametro quovis DB describatur circuli quadrans BETF, & per semidiametri DB terminum B agatur infinita BAP, semidiametro DF parallela.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 18:2)
quanto unus tribus minor est, tanto binarius quaternario, vel quanto ternarius unitatem superat, tanto binarium transgreditur quaternarius.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:26)
Namque ex uno primo tetragono et binario primo parte altera longiore ternarius triangulus copulatur, et ex binario et quaternario, id est ex secundo tetragono senarius triangulus procreatur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex quadratis et parte altera longioribus omnis formarum ratio consistat 1:2)
Primus ergo duplex est binarius numerus, qui unum solum sesqualterum recipit, id est ternarium, binarius enim contra ternarium comparatus sesqualteram efficit proportionem.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:4)
Vis qua Luna in orbe suo circa Terram quiescentem, ad distantiam PS semidiametrorum terrestrium 60½ revolvi posset, est ad vim, qua eodem tempore ad distantiam semidiametrorum 60 revolvi posset, ut 60½ ad 60;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 25:12)
quoniam earum perimetri sunt ut semidiametri globorum & vires in analogis perimetrorum locis sunt ut distantiae locorum a communi globorum centro, hoc est ut globorum semidiametri, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:2)
Illi vero, qui sunt pares, quoniam binarii numeri formae sunt, quique ex his coacervati collectique in unam congeriem parte altera longiores numeri nascuntur, hi secundum ipsius binarii numeri naturam ab eiusdem substantiae natura discessisse dicuntur, putanturque alterius naturae esse participes idcirco, quoniam, cum latera tetragonorum ab aequalitate progressa in aequalitatempropriae latitudinis ambitum tendant, hi adiecto uno ab aequalitate laterum discesserunt atque ideo dissimilibus lateribus et quodammodo a se alteris coniunguntur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:5)
Sic in Problemate jam solvendo, si scribantur [sqrt]1 + aa ÷ ee seu n ÷ e pro [sqrt]{1 + QQ}, nn ÷ 2e^3 pro R, & ann ÷ 2e^3 pro S, prodibit Medii densitas ut a ÷ ne, hoc est (ob datam n) ut a ÷ e seu OB ÷ BC, id est ut Tangentis longitudo illa CT, quae ad semidiametrum OL ipsi AK normaliter insistentem terminatur, & resistentia erit ad gravitatem ut a ad n, id est ut OB ad circuli semidiametrum OK, velocitas autem erit ut [sqrt]2BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:1)

SEARCH

MENU NAVIGATION