라틴어 문장 검색

Esto circuli circumferentia SQPA, centrum vis centripetae S, corpus in circumferentia latum P, locus proximus in quem movebitur Q. Ad diametrum SA & rectam SP demitte perpendiculi PK, QT, & per Q ipsi SP parallelam age LR occurrentem circulo in L & tangenti PR in R, & coeant TQ, PR in Z. Ob similitudinem triangulorum ZQR, ZTP, SPA erit RP quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 50:1)
motus mediocris Nodorum in Ellipsi erit ad motum mediocrem Nodorum in circulo, ut Ellipsis ad circulum, id est ut Ta ad TA, seu 68-11/12 ad 69-11/12.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 6:4)
Gyretur corpus in circumferentia circuli, requiritur lex vis centripetae tendentis ad punctum aliquod in circumferentia datum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 49:1)
Vis autem qua corpus in circulo ad distantiam CV ea cum velocitate revolvi posset quam corpus in Ellipsi revolvens habet in V, est ad vim qua corpus in Ellipsi revolvens urgetur in Apside V, ut dimidium lateris recti Ellipseos ad circuli semidiametrum CV, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 8:10)
Unde vicissim si vis sit ut distantia, movebitur corpus in Ellipsi centrum habente in centro virium, aut forte in circulo, in quem Ellipsis migrare potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 68:2)
In circumferentia PHSh capiantur aequales arcus HI, IK vel hi, ik, eam habentes rationem ad circumferentiam totam quam habent aequales rectae EF, FG ad pulsuum intervallum totum BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:1)
Ergo tempus quo pulsus percurrit spatium BC, est ad tempus oscillationis unius ex itu & reditu compositae, ut BC ad Z × A ÷ PO, id est ut BC ad circumferentiam circuli cujus radius est A. Tempus autem, quo pulsus percurret spatium BC, est ad tempus quo percurret longitudinem huic circumferentiae aequalem, in eadem ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:17)
consideranda erit figura, quam Luna in Ellipsi illa revolvendo describit in hoc plano, hoc est Figura Cpa, cujus puncta singula p inveniuntur capiendo punctum quodvis P in Ellipsi, quod locum Lunae representet, & ducendo Sp aequalem SP, ea lege ut angulus PSp aequalis sit motui apparenti Solis à tempore Quadraturae C confecto;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:3)
Nam si descriptae Ellipses essent sibi invicem aequales, tempora periodica, per Theorema superius, forent in dimidiata ratione corporis S ad summam corporum S + P. Minuatur in hac ratione tempus periodicum in Ellipsi posteriore, & tempora periodica evadent aequalia, Ellipseos autem axis transversus per Theorema VII.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 19:1)

SEARCH

MENU NAVIGATION