라틴어 문장 검색

Nam si materia densior sit ad centrum quàm ad circumferentiam, diameter, quae ab oriente in occidentem ducitur, erit adhuc major.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 34:6)
ex Hypothesi quod densitas illa, pergendo ad circumferentiam, uniformiter decrescat.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:25)
Curvaturas linearum pono esse inter se in ultima proportione Sinuum vel Tangentium angulorum contactuum ad radios aequales pertinentium, ubi radii illi in infinitum diminuuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:2)
Id quod satis accuratè fiet, si tangens anguli CSP diminuatur in dimidiata ratione numeri 10973 ad numerum 11073, id est in ratione numeri 68-5958/10000 ad numerum 68-11/12.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:7)
Nam si Luna uniformi cum motu perambulet semicirculum QAq, summa omnium arearum PDdM, quo tempore Luna pergit à Q ad M, erit area QMdE quae ad circuli tangentem QE terminatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:6)
dein Luna pergente ab n ad q, linea PD cadet extra circulum, & aream nqe ad circuli tangentem qe terminatam describet;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:8)
& summa omnium huic aequalium arearum, quo tempore Luna circulum describit, est rectangulum sub circumferentia tota & radio circuli;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:13)
Nam si PF tangat circulum in P, & producta occurrat TN in F, & pf tangat Ellipsin in p & producta occurrat eidem TN in f, conveniant autem hae Tangentes in axe TQ ad Y;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:1)
Igitur cum, in data Nodorum positione, summa omnium arearum pDdm, quo tempore Luna pergit à Quadratura ad locum quemvis m, sit area mpQEd, quae ad Ellipseos Tangentem QE terminatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 6:2)
& propterea summa omnium rectangulorum in circulo toto ad summam totidem maximorum, ut area circuli totius ad rectangulum sub circumferentia tota & radio;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 11:9)
Unde si circuli totius circumferentia NAn dividatur in particulas aequales Aa, tempus quo Sol percurrat particulam Aa, si circulus quiesceret, erit ad tempus quo percurrit eandem particulam, si circulus una cum Nodis circa centrum T revolvatur, reciprocè ut 9,0829032 ATq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:11)
hoc est ut circumferentia QAqa ducta in AZ × TZ × Pp ÷ PG ad 2MP × AT quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 25:6)
hoc est ut diameter ducta in Pp ÷ PG, ad circumferentiam;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 27:10)
& annuli motus iste circa axem Cylindri uniformiter continuatus, ad ejusdem motum uniformem circa diametrum propriam, eodem tempore periodico factum, ut circumferentia circuli ad duplum diametri.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 61:3)
Unde etiam si orbes ad centrum densiores sint quàm ad circumferentiam, idem erit motus aequinoctiorum Terrae totius ac prius;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:9)

SEARCH

MENU NAVIGATION