라틴어 문장 검색

Contrarium autem geometricae medietati in hac proportione est, quod in illa quemadmodum major terminus ad minorem est, sic maiorum differentia ad differentiam minorum;
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:4)
Ternarius autem binario comparatus sesqualteram habitudinem proportionis efficiet.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:3)
Eodem autem modo haec quoque medietas geometricae contraria est, quemadmodum et quinta, propter proportionem differentiarum a minoribus ad maiores terminos conversam.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:4)
Novenarius igitur ad senarium sesqualter est, quorum est differentia ternarius, minorum vero terminorum, id est octonarii et senarii binarius differentia est, qui ad superiorem ternarium comparatus facit sesqualteram proportionem.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:7)
Novem igitur ad vj sesqualter est. Et eorum differentia ternarius est, qui comparatus contra maiorum differentiam, id est septenarii et novenarii, qui binarius est, reddit sesqualteram proportionem.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:9)
Septenarii vero et quaternarii ternarius differentia est, quem si ad superiorem binarium comparemus, sesqualtera proportione coniungitur.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:11)
Haec autem huiusmodi invenietur, si duobus terminis constitutis, qui ipsi tribus creverint intervallis, longitudine latitudine et profunditate, duo huismodi termini medii fuerint constituti et ipsi tribus intervallis notati, qui vel ab aequalibus per aequales aequaliter sint producti vel ab inaequalibus ad inaequalia inaequaliter, vel ab inaequalibus ad aequalia aequaliter, vel quolibet alio modo, atque ita, cum armonicam proportionem custodiant alio tamen modo comparati faciant arithmeticam medietatem hisque geometrica medietas, quae inter utrasque versatur, deesse non possit.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:3)
In quattuor enim terminis si fuerit quemadmodum primus ad tertium sic secundus ad quartum, proportionum ratione scilicet custodita, geometrica medietas explicatur, et quod continetur sub extremitatibus, aequum erit ei, quod sub utraque medietate ad se invicem multiplicata conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:4)
Rursus si maximus iiij terminorum numerus ad eum, qui sibi propinquus erit, talem habeat differentiam, qualem idem ipse maximo propinquus ad parvissimum, huiusmodi proportio in arithmetica consideratione proponitur, et extremorum coniunctio duplex erit propria medietate.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:5)
Si vero inter iiij qui est tertius terminus aequa parte quarti quartum terminum superet et aequa primi a primo superetur, armonica huiusmodi proportio medietasque perspicitur, et quod continetur sub extremorum adgregatione et multiplicatione medietatis duplex est eo, quod sub utraque extremitate conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:6)
Utraque enim comparatio sesqualtera proportio est, et quod continetur sub extremitatibus, idem est ei, quod fit ex mediis.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:9)
Geometrica ergo proportio est huiusmodi.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:11)
Namque viij ad vj et xiiij ad xij comparati sesquitertiam proportionem reddunt, et simul diatessaron consonantiam;
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:20)
vj vero ad viiij vel viij ad xij comparati reddunt proportionem sesqualteram, sed diapente efficiunt symphoniam;
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:21)
xij vero ad senarium considerati duplicem quidem proportionem, sed diapason symphoniam canunt;
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:22)

SEARCH

MENU NAVIGATION