라틴어 문장 검색

hoc est (conjunctis rationibus) ut cubi distantiarum inversè.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 16:11)
cubis reciprocè proportionalia, erunt summae distantiarum, hoc est, motus toti angulares, ut respondentes summae linearum Aa, Bb, Cc, Dd, Ee:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 16:14)
Curvaturas linearum pono esse inter se in ultima proportione Sinuum vel Tangentium angulorum contactuum ad radios aequales pertinentium, ubi radii illi in infinitum diminuuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:2)
Id quod satis accuratè fiet, si tangens anguli CSP diminuatur in dimidiata ratione numeri 10973 ad numerum 11073, id est in ratione numeri 68-5958/10000 ad numerum 68-11/12.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:7)
ut contentum sub sinibus angulorum trium TPI, PTN, & STN (seu distantiarum Lunae à Quadratura, Lunae à Nodo & Nodi à Sole) ad cubum Radii.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 52:11)
Nam si Luna uniformi cum motu perambulet semicirculum QAq, summa omnium arearum PDdM, quo tempore Luna pergit à Q ad M, erit area QMdE quae ad circuli tangentem QE terminatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:6)
dein Luna pergente ab n ad q, linea PD cadet extra circulum, & aream nqe ad circuli tangentem qe terminatam describet;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:8)
Nam si PF tangat circulum in P, & producta occurrat TN in F, & pf tangat Ellipsin in p & producta occurrat eidem TN in f, conveniant autem hae Tangentes in axe TQ ad Y;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:1)
Igitur cum, in data Nodorum positione, summa omnium arearum pDdm, quo tempore Luna pergit à Quadratura ad locum quemvis m, sit area mpQEd, quae ad Ellipseos Tangentem QE terminatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 6:2)
) ut tangens DG ad circuli BED circumferentiam totam, atque angulus iste ad motum medium Nodorum addatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:16)
Quoniam vis Lunae ad mare movendum est ad Solis vim consimilem ut 6-1/3 ad 1, & vires illae sunt ut densitates corporum Lunae & Solis & cubi diametrorum apparentium conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 48:2)
Ideoque contentum sub longitudine in Tangente descripta & longitudine S[mu], esset ad contentum sub longitudinibus AC & SM, ut area ASC[mu] ad triangulum ASCM, id est ut SN ad SM.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:3)
Quare AC est ad longitudinem in tangente descriptam ut S[mu] ad SN.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:4)
Cum autem velocitas Cometae in altitudine SP sit ad velocitatem in altitudine S[mu] in dimidiata ratione SP ad S[mu] inversè, id est in ratione S[mu] ad SN, longitudo hac velocitate eodem tempore descripta, erit ad longitudinem in Tangente descriptam ut S[mu] ad SN.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:5)
Igitur AC & longitudo hac nova velocitate descripta, cum sint ad longitudinem in Tangente descriptam in eadem ratione, aequantur inter se. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:6)

SEARCH

MENU NAVIGATION