라틴어 문장 검색

Deinde si vires quaelibet aequales in alternas globorum facies ad motum circularem augendum vel minuendum simul imprimerentur, innotesceret ex aucta vel diminuta fili tensione augmentum vel decrementum motus;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 43:7)
At si attenderetur ad filum & inveniretur tensionem ejus illam ipsam esse quam motus globorum requireret;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 43:13)
Ut si de rotae alicujus centro O exeuntes radij inaequales OM, ON filis MA, NP sustineant pondera A & P, & quaerantur vires ponderum ad movendam rotam:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:1)
per centrum O agatur recta KOL filis perpendiculariter occurrens in K & L, centroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:2)
O & intervallorum OK, OL majore OL describatur circulus occurrens filo MA in D:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:3)
Quoniam nihil refert utrum filorum puncta K, L, D affixa sint vel non affixa ad planum rotae, pondera idem valebunt ac si suspenderentur a punctis K & L vel D & L. Ponderis autem A exponatur vis tota per lineam AD, & haec resolvetur in vires AC, CD, quarum AC trahendo radium OD directe a centro nihil valet ad movendam rotam;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:5)
Si filo pN perpendiculare esset planum aliquod pQ secans planum alterum pG in linea ad horizontem parallela;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:4)
si pondus p sit ad pondus A in ratione quae componitur ex ratione reciproca minimarum distantiarum filorum suorum AM, pN a centro rotae, & ratione directa pH ad pN;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:10)
Pendeant corpora A, B filis parallelis AC, BD a centris C, D. His centris & intervallis describantur semicirculi EAF, GBH radijs CA, DB bisecti.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:8)
Et si per B & A ducantur plures rectae BE, BD, AF, AG, secantes tangentem AD & ipsius parallelam BF, ratio ultima abscissarum omnium AD, AE, BF, BG, chordaeq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 31:2)
erunt semper abscissae laterum partes PR & PT ad invicem in data ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 25:3)
Et contra, si partes illae abscissae sunt ad invicem in data ratione, punctum D tanget Sectionem Conicam per puncta quatuor A, B, P, C transeuntem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 25:4)
Nulla extat figura Ovalis cujus area, rectis pro lubitu abscissa, possit per aequationes numero terminorum ac dimensionum finitas generaliter inveniri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 9:1)
Nequit ergo intersectio rectae & spiralis per aequationem finitam generaliter inveniri, & idcirco nulla extat Ovalis cujus area, rectis imperatis abscissa, possit per talem aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:25)
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissae proportionale, probari potest quod longitudo perimetri nequit per finitam aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 11:1)

SEARCH

MENU NAVIGATION