라틴어 문장 검색

Et tempora periodica motibus angularibus reciprocè proportionalia erunt etiam his areis reciprocè proportionalia.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 16:16)
Hinc motus angulares partium fluidi circa axem globi sunt reciprocè ut quadrata distantiarum à centro globi, & velocitates absolutae reciprocè ut eadem quadrata applicata ad distantias ab axe.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 19:2)
Si vas, Fluidum inclusum & globus servent hunc motum, & motu praeterea communi angulari circa axem quemvis datum revolvantur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 26:2)
Nam si Systemati toti auferatur vasis motus angularis, manebunt motus omnes iidem inter se qui prius, per Corol. 8.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 28:4)
Patet enim, per Corol. 1. Prop. XLV. Lib. I. quod si distantia Lunae à centro Terrae dicatur D, vis à qua motus talis oriatur, sit reciproce ut D^{2-4/243}, id est reciprocè ut ea ipsius D dignitas, cujus index est 2-4/243, hoc est in ratione distantiae paulo majore quam duplicata inverse, sed quae vicibus 60¾ propius ad duplicatam quam ad triplicatam accedit.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 9:5)
Unde cum vis illa accedendo ad terram augeatur in duplicata distantiae ratione inversâ, adeoque ad superficiem Terrae major sit vicibus 60 × 60 quam ad Lunam, corpus vi illa in regionibus nostris cadendo describere deberet spatio minuti unius primi pedes Parisienses 60 × 60 × 15-1/12, & spatio minuti unius secundi pedes 15-1/12.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 12:10)
Nam pondera corporum aequalium circum Planetas in circulis revolventium sunt (per Prop. IV. Lib. I.) ut diametri circulorum directè & quadrata temporum periodicorum inversè;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 36:3)
& pondera ad superficies Planetarum aliasve quasvis à centro distantias majora sunt vel minora (per hanc Propositionem) in duplicata ratione distantiarum inversa.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 36:4)
& propterea distantia Lunae à Terrâ est in ratione compositâ ex dimidiatâ ratione Areae directè & dimidiatâ ratione motus horarii inversè. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 34:2)
Curvatura Trajectoriae, quam mobile, si secundum Trajectoriae illius perpendiculum trahatur, describit, est ut attractio directè & quadratum velocitatis inversè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:1)
Sumatur haec ratio bis inversè & ratio prior semel directè, & fiet Curvatura Orbis Lunaris in Syzygiis ad ejusdem Curvaturam in Quadraturis ut 120407 × 178725ASq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:18)
& inversè ut LM est ad lm, seu FR ad cR, ita est FG ad ce.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:8)
erit densitas Lunae ad densitatem Solis ut 6-1/3 ad 1 directè & cubus diametri Solis ad cubum diametri Lunae inversè, id est (cum diametri mediocres apparentes Solis & Lunae sint 31'. 27".
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 48:3)
Si Terra pergit ad eandem partem cum Cometa, & motu angulari circa Solem celerius fertur, Cometa è Terra spectatus, ob motum suum tardiorem, apparet esse retrogradus;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 13:6)
Unde si detur & lucis quantitas & apparens diameter Cometae, dabitur distantia, dicendo quod distantia sit ad distantiam Planetae in ratione integra diametri ad diametrum directè & ratione dimidiata lucis ad lucem inversè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 15:4)

SEARCH

MENU NAVIGATION