라틴어 문장 검색

) qua gravitas acceleratrix Lunae in Solem superat gravitatem acceleratricem Terrae in Solem.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:4)
Si corpus Lunare fluidum esset ad instar maris nostri, vis Terrae ad fluidum illud in partibus & citimis & ultimis elevandum, esset ad vim Lunae, qua mare nostrum in partibus & sub Luna & Lunae oppositis attollitur, ut gravitas acceleratrix Lunae in Terram ad gravitatem acceleratricem Terrae in Lunam & diameter Lunae ad diametrum Terrae conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 53:1)
Est autem absoluta vis attractiva corporis A ad vim absolutam attractivam corporis B, ut attractio acceleratrix corporum omnium versus A ad attractionem acceleratricem corporum omnium versus B, paribus distantiis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 85:2)
Nam tempora oscillationum pyxidis plenae minora sunt quam tempora oscillationum pyxidis vacuae, & propterea resistentia pyxidis plenae in externa superficie major est, pro ipsius velocitate & longitudine spatii oscillando descripti, quam ea pyxidis vacuae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 106:8)
) si distantiae inter undarum loca altissima A, C, E, & infima B, D, F aequentur duplae penduli longitudini, partes altissimae A, C, E tempore oscillationis unius evadent infimae, & tempore oscillationis alterius denuo ascendent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 30:10)
& ita est attractio acceleratrix corporis B versus A, ad attractionem acceleratricem corporis A versus B. Sed attractio acceleratrix corporis B versus A est ad attractionem acceleratricem corporis A versus B, ut massa corporis A ad massam corporis B;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 85:3)
attractiones acceleratrices corpusculorum in corpora tota erunt ut attractiones acceleratrices corpusculorum in eorum particulas totis proportionales & in totis similiter positas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 8:2)
cum tempora quibus corpora describant singulas arcuum partes correspondentes sint ut tempora oscillationum totarum, erunt velocitates ad invicem in correspondentibus oscillationum partibus, ut vires motrices & tota oscillationum tempora directe & quantitates materiae reciproce:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 3:6)
Unde cum in Oscillationibus inaequalibus describantur aequalibus temporibus arcus totis Oscillationum arcubus proportionales, habentur ex datis temporibus & velocitates & arcus descripti in Oscillationibus universis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:15)
Igitur si in aequalibus à Sole distantiis, gravitas acceleratrix Satellitis cujusvis in Solem major esset vel minor quàm gravitas acceleratrix Jovis in Solem, parte tantum millesima gravitatis totius;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 21:28)
Et gravitas acceleratrix in superficie Lunae, erit quasi duplo minor quàm gravitas acceleratrix in superficie Terrae.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 50:2)
Est ergo tempus totum in circulo HKM, Oscillationi in una Cycloide respondens, ad tempus totum in circulo hkm Oscillationi in altera Cycloide respondens, ut semiperiferia HKM ad medium proportionale inter hanc semiperiferiam & semiperiferiam circuli alterius hkm, id est in dimidiata ratione diametri HM ad diametrum hm, hoc est in dimidiata ratione perimetri Cycloidis primae ad perimetrum Cycloidis alterius, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 35:11)
Ideoque cum punctum M, ubi corpus versatur in medio oscillationis loco O, incidat circiter in punctum P, & priore oscillationis parte versetur inter A & P, posteriore autem inter P & a, utroque in casu aequaliter a puncto P in partes contrarias errans:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:20)
Hinc ex oscillationum temporibus, in Medio resistente in arcubus inaequalibus factarum, cognosci possunt tempora oscillationum in ejusdem gravitatis specificae Medio non resistente.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 22:2)
& si gravitas acceleratrix Terrae in Solem exponatur per distantiam QS vel QK, erit QL gravitas acceleratrix Lunae in Solem.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 25:4)

SEARCH

MENU NAVIGATION