라틴어 문장 검색

Si corpus Funependulum in Cycloide oscillans resistitur in ratione momentorum temporis, erit ejus resistentia ad vim gravitatis ut excessus arcus descensu toto descripti supra arcum ascensu subsequente descriptum, ad penduli longitudinem duplicatam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 25:1)
id est (si arcus duplicentur) ut Cycloidis totius arcus, seu dupla penduli longitudo, ad arcum Aa. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 26:4)
) arcus oscillatione integra descriptus, sitque C infimum Cycloidis punctum, & CZ semissis arcus Cycloidis totius, longitudini Penduli aequalis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 30:2)
& quaeratur resistentia corporis in loco quovis D. Secetur recta infinita OQ in punctis O, C, P, Q ea lege ut (si erigantur perpendicula OK, CT, PI, QE, centroque O & Asymptotis OK, OQ describatur Hyperbola TIGE secans perpendicula CT, PI, QE in T, I & E, & per punctum I agatur KF occurrens Asymptoto OK in K, & perpendiculis CT & QE in L & F) fuerit area Hyperbolica PIEQ ad aream Hyperbolicam PITC ut arcus BC descensu corporis descriptus ad arcum Ca ascensu descriptum, & area IEF ad aream ILT ut OQ ad OC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 30:3)
Si recta aB aequalis sit Cycloidis arcui quem corpus oscillando describit, & ad singula ejus puncta D erigantur perpendicula DK, quae sint ad longitudinem Penduli ut resistentia corporis in arcus punctis correspondentibus ad vim gravitatis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 40:1)
Bisecetur AB in C, & punctum C repraesentabit infimum Cycloidis punctum, & erit CD ut vis a gravitate oriunda, qua corpus in D secundum Tangentem Cycloidis urgetur, eamque habebit rationem ad longitudinem Penduli quam habet vis in D ad vim gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:2)
Exponatur igitur vis illa per longitudinem CD, & vis gravitatis per longitudinem penduli;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:3)
& si in DE capiatur DK in ea ratione ad longitudinem penduli quam habet resistentia ad gravitatem, erit DK exponens resistentiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:4)
7/11Aa ad longitudinem penduli ut corporis oscillantis resistentia in O ad ejusdem gravitatem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:12)
Est igitur rectangulum sub ½Ba & Aa aequale rectangulo sub 2/3Ba & OV, adeoque OV aequalis ¾Aa, & propterea corporis oscillantis resistentia in O ad ipsius gravitatem ut ¾Aa ad longitudinem Penduli.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 46:2)
Oritur enim differentia illa ex retardatione Penduli per resistentiam Medii, adeoque est ut retardatio tota eique proportionalis resistentia retardans.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:1)
Ideoque si, pendulo inaequales arcus successive describente, inveniri potest ratio incrementi ac decrementi resistentiae hujus pro longitudine arcus descripti, habebitur etiam ratio incrementi ac decrementi resistentiae pro velocitate majore vel minore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 55:2)
Ad CR erigantur perpendicula PC, RX, centroque R & Asymptotis CR, RX describatur Hyperbola quaevis PVY.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 37:3)
Erigatur perpendiculum tv Hyperbolae occurrens in v, & (per Corol. 1. Prop. V. Lib. II.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 38:11)
Et propterea si vas, ad modum corporis penduli, filo praelongo a clavo suspendatur, hoc, si aqua in plagam quamvis secundum lineam horizontalem effluit, recedet semper a perpendiculo in plagam contrariam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 52:6)

SEARCH

MENU NAVIGATION