라틴어 문장 검색

Sit enim talis descriptio, in qua ponatur in ordinem usque ad denarium numerum continui numeri ordo naturalis et secundo versu duplus ordo texatur, tertio triplus, quarto quadruplus et hoc usque ad decuplum.
(보이티우스, De Arithmetica, Liber primus, Descriptio, per quam docetur ceteris inaequalitatis speciebus antiquiorem esse multiplicitatem. 1:2)
Rursus si triplicibus idem feceris, continuus quadruplus procreabitur.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 10:1)
Rursus secunda species superparticularis numeri, id est sesquitertius procreatus est. Quod si idem de quadruplo quis facere velit, sesquiquartus continuo nascetur, ut subiecta monstrat descriptio.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 25:1)
Ibi enim iubemur producere atque extendere tres vel quattuor sesqualteros vel quotlibet sesquitertias proportiones et sesquiquartas comparationes easque secundum propositum ordinem saepe continuas iubemur extendere.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 1:2)
Namque ubi prima latitudo fuerit duplex, et sub eisdem qui sunt versus continui alternatim positi secundum seriem latitudinis duplices erunt.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 23:3)
Si autem hic, id est triplus numerus, qui est species secunda multiplicis, secundae speciei superparticularis aptetur, quadrupli continuo forma contexitur.
(보이티우스, De Arithmetica, Liber secundus, Quod multiplex intervallum ex quibus superparticularibus medietate posita intervallis fiat eiusque inveniendi regula. 5:2)
Sin vero quattuor contra duo compares, hic quoque dupla proportio est. Quos tres terminos si continue consideres, ex duabus proportionibus fit proportionalitas et est proportionalitas unum ad duo et duo ad quattuor.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:10)
Igitur quotiens unus atque idem terminus ita duobus circum se terminis communicat, ut ad unum dux sit, ad alium comes, haec proportionalitas continua vocatur, ut unus, duo, quattuor.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:14)
aequales enim sunt differentiae, sed eadem proportio atque habitudo non est. Si igitur in tribus terminis consideratio sit, continua proportionalitas dicitur;
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:4)
Si igitur in tribus tantum terminis secundum continuam medietatem respexeris vel in quattuor vel in quotlibet aliis secundum disiunctam easdem semper differentias terminorum videbis, tantum solis proportionibus permutatis.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:6)
Sit continua medietas j ij iij. Hic unus a duobus et duo a tribus solis tantum singulis distant, et sunt eaedem differentiae, proportiones vero aliae.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:8)
Namque si duos intermittas, ternarius differentiam continebit, si tres, quaternarius, si quattuor, quinarius aeque in continuis proportionibus atque disiunctis.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:2)
Illud quoque subtilius, quod multi huius disciplinae periti nisi Nicomachus nunquam antea perspexerunt, quod in omni dispositione vel continua vel disiuncta, quod continetur sub duabus extremitatibus minus est eo numero, qui ex medietate conficitur, tantum, quantum possunt duae sub se differentiae continere, quae inter ipsos sunt terminos constitutae.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:3)
Haec autem proportionalitas et in aliis omnibus vel superparticularibus vel superpartientibus invenitur huiusmodi proprietate in omnibusconservata, ut in continua proportione, quod fit sub extremitatibus, si tres fuerint termini, hoc a medietate multiplicata consurgat.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:1)
Par enim parem si multiplicet, semper par nascitur et inpar inparem si multiplicet, inpar continuo procreabitur.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:32)

SEARCH

MENU NAVIGATION