라틴어 문장 검색

Quod si continuatim quis faciat, cunctos huiusmodi numeros in conpetenti ordine procreatos videbit, quam descriptionem scilicet inferior forma demonstrat.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:14)
et ad eundem modum usque in finem descriptionis geminatis huiusmodi partibus, sicut ipsa quoque summarum comparatio geminata est, aequas partium progressiones aspicies.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:7)
Hoc autem diligentius subiecta descriptio docet.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 3:5)
Sin vero alius ad unum refertur terminus, alius vero ad alium, necesse est habitudinem disiunctam vocari, ut ad qualitatem quidem proportionis sunt:
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:17)
Inde etiam in Aristotelica atque Archytae prius decem praedicamentorum descriptione Pythagoricum denarium manifestum est inveniri;
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:6)
Qualitas autem proportionis eadem non erit, quamvis sint aequis termini differentiis distributi.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:3)
Quod si conversim ponantur, ut non eisdem differentiis eadem qualitas proportionis eveniat, geometrica talis proportionalitas, non arithmetica nominatur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:4)
Harum vero medietatum, id est arithmeticae atque armonicae, geometrica proportionalitas media esse notata est, quae vel in maioribus vel in minoribus terminis aequas numerorum qualitates in proportionalitate custodit.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:6)
Sive enim dupli contra se sint termini, duplae erunt etiam differentiae, sive tripli, triplae, sive secundum quamlibet multiplicitatem, eadem in differentiis multiplicitas erit, quam prima consideratio invenit in terminis, ut subiecta descriptio monet.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 5:2)
quod subiecta descriptione signatum est.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:8)
Sed hoc quoque subiecta descriptione monstratur.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 1:5)
In triplici quoque dispositione simul diapente et diapason symphonia componitur servans sesqualteram et duplicem rationem, quod subiecta descriptio docet.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 6:1)
Huius descriptionis subter exemplar adiecimus.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:25)
Quis est enim tam compositae felicitatis ut non aliqua ex parte cum status sui qualitate rixetur?
(보이티우스, De philosophiae consolatione, Liber Secundus, VII 2:7)
Non tam uero certus naturae ordo procederet nec tam dispositos motus locis, temporibus, efficientia, spatiis, qualitatibus explicarent nisi unus esset qui has mutationum uarietates manens ipse disponeret.
(보이티우스, De philosophiae consolatione, Liber Tertius, XXIII 1:13)

SEARCH

MENU NAVIGATION