라틴어 문장 검색

At vero posteri propter denarii numeri perfectionem, quod erat Pythagorae conplacitus, medietates alias quattuor addiderunt, ut in his proportionalitatibus denariae quantitatis corpus efficerent.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:4)
Nunc vero de proportionalitatibus deque medietatibus dicendum est, et primum quidem de ea medietate tractabimus, quae secundum quantitatis aequalitatem neglecta proportionis parilitate constitutorum terminorum habitudines servat.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:1)
In his autem quantitatibus medietas ista versatur, inque his speculanda est, in quibus a se ipsis termini differunt.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:2)
Quid autem esset differentia terminorum superius definitum est. Hanc autem esse arithmeticam medietatem numerorum, ipsa ratio declarabit, quoniam eius proportio in numeri quantitate consistit.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:3)
Primum, quod hanc nobis in principio ipsa numerorum natura et vis naturalis quantitatis obponit.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:5)
Est autem proprium huius medietatis, quod, si in tribus terminis speculatio sit, compositis extremitatibus illa summa, quae inter extremitates est, non loco tantum verum etiam sit quantitate medietas.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:1)
in minoribus enim terminis minores proportiones, in maioribus maior proportionis quantitas custoditur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:5)
Hic enim aequa semper proportio custoditur, numeri quantitas multitudoque neglegitur, contrarie quam in arithmetica medietate, ut sunt j ij iiij viij xvj xxxij lxiiij vel in tripla proportione j iij viiij xxvij lxxxj vel si quadrupla vel si quincupla vel si in quamlibet multiplicitatem numerorum sit constituta distensio.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:2)
In hac enim dispositione armonica, quae est ij iij vj ternarius binarium tertia sui parte vincit, idem ternarius a senario tota sui quantitate superatur, id est tribus, idemque ipse ternarius medietate minoris vincit minorem, id est uno, et medietate maioris a maiore termino vincitur, id est tribus.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:15)
Habet autem aliam proprietatem armonica medietas, ut cum duas extremitates in unum redactas medietas multiplicaverit, dupla quantitas colligatur, quam si se multiplicent duae extremitates.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:18)
Cuius haec ratio est, quoniam arithmetica dispositio aequas tantum per differentias dividit quantitates, geometrica vero terminos aequa proportione coniungit, at vero armonica ad aliquid quodammodo relata consideratione neque solum in terminis speculationem proportionis habet neque solum in differentiis, sed in utrisque communiter.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:2)
Inter hos ergo si xxv posuero, erit mihi arithmetica proportio differentiarum quantitate inmutabiliter custodita, in huiusmodi scilicet dispositione:
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:5)
x xxv xl. Vides enim, ut quindena sese summulae quantitate transcendant;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:6)
et si in unum extremitates redigantur et medietatis quantitate concrescant, duplus inde conficitur numerus ab eo, qui ex solis multiplicatis extremitatibus procreatur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 3:7)
Nam si sint v xxv xlv eadem sese numerorum quantitate termini transgredientur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 4:2)

SEARCH

MENU NAVIGATION