라틴어 문장 검색

Quare resistentia, ipsiq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 64:5)
et inde HF ad FG, hoc est resistentia ad gravitatem, ut rectangulum CF in FG - kl ad 4FG quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 66:4)
Sit Linea ACK semicirculus super diametro AK descriptus, & requiratur Medii densitas quae faciat ut Projectile in hac linea moveatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 68:2)
deinde etiam ponendo resistentiam Medii in loco quovis G esse ad Gravitatem ut S[sqrt]{1 + QQ} ad 2RR, & velocitatem esse illam ipsam quacum corpus, de loco C secundum rectam CF egrediens, in Parabola, diametrum CB & latus rectum {1 + QQ} ÷ R habente, deinceps moveri posset, solvetur Problema.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 71:16)
Sic in Problemate jam solvendo, si scribantur [sqrt]1 + aa ÷ ee seu n ÷ e pro [sqrt]{1 + QQ}, nn ÷ 2e^3 pro R, & ann ÷ 2e^3 pro S, prodibit Medii densitas ut a ÷ ne, hoc est (ob datam n) ut a ÷ e seu OB ÷ BC, id est ut Tangentis longitudo illa CT, quae ad semidiametrum OL ipsi AK normaliter insistentem terminatur, & resistentia erit ad gravitatem ut a ad n, id est ut OB ad circuli semidiametrum OK, velocitas autem erit ut [sqrt]2BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:1)
Igitur si corpus C certa cum velocitate, secundum lineam ipsi OK parallelam, exeat de loco L, & Medii densitas in singulis locis C sit ut longitudo tangentis CT, & resistentia etiam in loco aliquo C sit ad vim gravitatis ut OB ad OK;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:2)
Resistentia autem invenitur in ratione ad Gravitatem quam habet XY ad YG, & velocitas ea est quacum corpus in Parabola pergeret verticem G diametrum DG & latus rectum YX quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 80:3)
resistentia in loco aliquo G sit ad gravitatem ut XY ad YG;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 80:7)
Resistentia autem in eodem loco G fit ad Gravitatem ut S in XY ÷ A ad 2RR, id est XY ad {{3nn + 3n} ÷ {n + 2}}VG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 88:4)
Quoniam motus non fit in Parabola nisi in Medio non resistente, in Hyperbolis vero hic descriptis fit per resistentiam perpetuam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 90:1)
÷ GV}, resistentia autem ad vim gravitatis ut GT ad {{3nn + 3n} ÷ {n + 2}}GV.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 91:3)
÷ AI}, ac resistentia ibidem ad Gravitatem ut AH ad {3nn + 3n} ÷ {n + 2} in AI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 92:4)
acceleratrix servetur, & proportio resistentiae in A ad gravitatem motricem augeatur in ratione, quacunque:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 95:3)
Sin figura ad inveniendam resistentiam Medij accuratius determinanda sit, corrigendae sunt semper hae longitudines per Regulam quartam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 100:13)
Et resistentia in G erit ad vim Gravitatis ut TG ad {{3nn - 3n} ÷ {n - 2}}VG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:8)

SEARCH

MENU NAVIGATION