라틴어 문장 검색

Sin tanta sit corporis velocitas ut latus rectum L aequale fuerit 2SP + 2KP, longitudo PH infinita erit, & propterea figura erit Parabola axem habens SH parallelum lineae PK, & inde dabitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 49:25)
biseca in K, & axe SK, vertice principali K describatur Parabola.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:9)
Nam Parabola ob aequales SK & IK, SP & FP transibit per punctum P;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:11)
quae, perinde ut GA minor, aequalis vel major fuerit quam AS, erit Ellipsis, Parabola vel Hyperbola;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 37:6)
Si AG nullibi occurrit Loco, linea AH existente infinita, Locus erit Parabola & latus rectum ejus BGq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 22:7)
Sit S umbilicus & A vertex principalis Parabolae, sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 4:1)
perpendiculum GH aequale 3M, & circulus centro H, intervallo HS descriptus secabit Parabolam in loco quaesito P. Nam demissa ad axem perpendiculari PO, est HGq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 4:5)
Hae autem constructiones demonstrantur ut supra, & si Figura (vertice ulteriore B in infinitum abeunte) vertatur in Parabolam, migrant in accuratam illam constructionem Problematis XXII.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 24:5)
Si figura BED Parabola est, dico quod corporis cadentis velocitas in loco quovis C aequalis est velocitati qua corpus centro B dimidio intervalli sui BC circulum uniformiter describere potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 14:1)
Nam corporis Parabolam RPB circa centrum S describentis velocitas in loco quovis S (per Corol. 7.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 16:1)
Minuatur Parabolae latitudo CP in infinitum eo, ut arcus Parabolicus PfB cum recta CB, centrum S cum vertice B, & interuallum SP cum intervallo BP coincidat, & constabit Propositio. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 16:4)
Quod si figura DES Parabola sit, invenietur ut supra CD × Cc esse ad SY × Dd ut TC ad ST, hoc est ut 2 ad 1, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 23:2)
Si ratio illa est numeri binarii ad unitatem, punctum A cadet ad infinitam distantiam, quo in casu Parabola uertice S, axe SC, latere quovis recto describenda est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 31:3)
Hyperbolam vel Parabolam attractione languida, Ellipsim fortiore,) & Radio ad maximum ducto, verret areas temporibus proportionales, absq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 41:9)
Ut si ordinatim applicata Parabolam attingat, existente m = 2, & n = 1:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 56:4)

SEARCH

MENU NAVIGATION