라틴어 문장 검색

Idem si a tetragona basi proficiscatur et ad unum verticem eius lineae dirigantur, erit pyramis quattuor triangulorum per latera, uno tantum tetragono in basi posito, super quam ipsa figura fundata est. Et si a pentagono surgant v lineae, quinque rursus pyramis triangulis continebitur, et si ab exagono, sex triangulis nihilominus;
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 2:1)
Omnis vero tetragonus, si ei proprium latus addatur, vel eodem rursus dematur, parte altera longior fit. Namque iiij tetragono si quis duo iungat vel duo detrahat, vj addendo perficiet et ij detrahendo.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum quadrati ex parte altera longioribus vel parte altera longiores ex quadratis fiant 1:1)
Nequit ergo intersectio rectae & spiralis per aequationem finitam generaliter inveniri, & idcirco nulla extat Ovalis cujus area, rectis imperatis abscissa, possit per talem aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:25)
Namque ex uno primo tetragono et binario primo parte altera longiore ternarius triangulus copulatur, et ex binario et quaternario, id est ex secundo tetragono senarius triangulus procreatur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex quadratis et parte altera longioribus omnis formarum ratio consistat 1:2)
Rursus si ponantur duo tetragoni ex superius descriptis, id est primus et secundus et in unum colligantur, et medius eorum parte altera longior his multiplicetur, tetragonus fit. Namque unus et iiij, si iungantur, v faciunt.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 30:2)
adeo in aequatione quavis, qua relatio inter abscissam AD & ordinatam DG habetur, indeterminatae illae AD & DG ad unicam tantum dimensionem ascendunt, scribendo in hac aequatione OA × AB ÷ ad pro AD, & OA × dg ÷ ad pro DG, producetur aequatio nova, in qua abscissa nova ad & ordinata noua dg ad unicam tantum dimensionem ascendent, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:11)
Illud autem apertissimum signum est, omnes tetragonos inparibus esse cognatos, quod in omni dispositione ab uno vel in duplicibus vel in triplicibus talis naturae ordo conseritur, ut nunquam, nisi secundum inparem locum tetragonus inveniatur.
(보이티우스, De Arithmetica, Liber secundus, Probatio quadratos eiusdem esse naturae 1:1)
Tetragonus autem dicitur, ut brevissime dicam, quod post latius explicabitur, quem duo aequales numeri multiplicant, ut in hac quoque descriptione est. Unus enim semel unus est, et est potestate tetragonus.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:2)

SEARCH

MENU NAVIGATION