라틴어 문장 검색

At si huic tetragonum superponam, id est quattuor, nascetur pyramis quinque numerorum, quae duobus tantum numeris per latera positis continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:7)
Atque huic si sequentem tetragonum xvj superponam, tricenaria mihi pyramidis forma producitur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:9)
Tetragoni j iiij viiij xvj xxv xxxvj xlviiij lxiiij lxxxj c
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 5:1)
Pyramides a tetragonis j v xiiij xxx lv xcj cxl cciiij cclxxxv ccclxxxv
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 6:1)
Omnis enim multorum angulorum forma ex sui generis figura unitati superposita ab uno ingredientibus ad pyramidum constituendas figuras usque in infinita progreditur et ex hoc equidem apparere necesse est, triangulas formas ceterarum figurarum esse principium, quod omnis pyramis a quacunque basi profecta vel a quadrato, vel a pentagono, vel ab exagono, vel ab eptagono vel a quocunque similium solis triangulis usque ad verticem continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 7:2)
Haec autem est, ut si quis xvj tetragono adiciat viiij atque huic iiij et ab ulterioris sese unitatis adiectione suspendat.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:4)
Pyramidis equidem figura est, sed quoniam usque ad cacumen verticis non excrevit, curta vocabitur et habebit summitatem non iam punctum, quod unitas est, sed superficiem, quod est quilibet numerus secundum basis ipsius angulos porrectus atque ultimus adgregatus.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:5)
Nam si tetragona fuerit basis, quadrata deminutione semper ascendit, et si pentagona basis, similiter, et si exagona, illa quoque ultima superficies erit exagona.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:6)
Ergo in curta pyramide tot erit angulorum superficies, quot fuerit basis.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:7)
ut si a xvj tetragono proficiscens usque in novem terminum ponat neque excrescat ad quattuor.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:9)
Et quotcunque tetragoni defuerint, totiens eam curtam esse dicemus;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:10)
si vero duobus tetragonis deficitur, id est unitate et eo, qui sequitur, vocatur bis curta, quod Graeci δικολουρον appellant.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:12)
Quod si tribus tetragonis, ter curta dicetur, quam Graeci τρικολουρον nominant.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:13)
Et quotcunque tetragoni fuerint minus, totiens illam pyramidem curtam esse proponimus.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:14)
Hoc autem non solis a tetragono pyramidis sed in omnibus ab omni multiangulo progredientibus speculari licet.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:15)

SEARCH

MENU NAVIGATION