라틴어 문장 검색

circa punctum immobile S, temporibus aequalibus aequalia describere, agit in loco B secundum lineam parallelam ipsi cC (per Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 9:4)
& per jam ante ostensa certum est quod temporibus aequalibus describent aequalia Spatia cum Luna, adeoque quod sunt ad quantitatem materiae in Luna, ut pondera sua ad ipsius pondus.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 21:15)
Pondus autem istud, quo tempore data quaelibet aquae quantitas, per foramen basi Cylindri circa Globum descripti aequale, sublato Globo effluere posset, sufficit ad ejus motum omnem generandum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 58:5)
& quo tempore pendulum illud oscillationem integram ex itu & reditu compositam peragit, eodem pulsus eundo conficiet spatium circumferentiae circuli radio A descripti aequale.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 50:3)
Area igitur, quam Luna radio ad Terram ducto singulis temporis particulis aequalibus describit, est quam proximè ut summa numeri 219-46/100 & Sinus versi duplicatae distantiae Lunae à Quadratura proxima, in circulo cujus radius est unitas.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 31:1)
Proinde temporibus aequalibus ab aequalibus altitudinibus cadendo describerent aequalia Spatia, perinde ut fit in gravibus, in hac Terra nostra.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 21:18)
Quare cum angulus VCP, in descensu corporis ab Apside summa ad Apsidem imam in Ellipsi confectus, sit graduum 180, conficietur angulus VCp, in descensu corporis ab Apside summa ad Apsidem imam in Orbe propemodum circulari, quem corpus quodvis vi centripeta dignitati A^{n - 3} proportionali describit, aequalis angulo graduum 180 ÷ [sqrt]n;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:16)
proportionali describit, aequalis angulo graduum 180 [sqrt]{{b + c} ÷ {mb + nc}}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 21:11)
subinde pergere aequaliter urgeri, & aequalia spatia describere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:9)
hoc est, aequalibus temporibus describet lineas GH, IK.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 9:6)
Nam si area illa per motum puncti D augeatur uniformiter ad modum temporis, decrescet recta DC in ratione Geometrica ad modum velocitatis, & partes rectae AC aequalibus temporibus descriptae decrescent in eadem ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 13:5)
area quam Radio ad punctum S ducto describeret, aequalis esset areae Parabolicae ASC[mu].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:2)
Corporum duorum S & P circa commune gravitatis centrum C revolventium tempus periodicum esse ad tempus periodicum corporis alterutrius P, circa alterum immotum S gyrantis & figuris quae corpora circum se mutuo describunt figuram similem & aequalem describentis, in dimidiata ratione corporis alterius S, ad summam corporum S + P.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 15:1)
Si ad Sphaerae alicujus AEB, centro S descriptae, particulas singulas aequales tendant aequales vires centripetae, & ad Sphaerae axem AB, in quo corpusculum aliquod P locatur, erigantur de punctis singulis D perpendicula DE, Sphaerae occurrentia in E, & in ipsis capiantur longitudines DN, quae sint ut quantitas DEq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 69:1)
) temporibus semper aequalibus, vel describent Ellipses in plano illo circa centrum C, vel periodos movendi ultro citroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 7:10)

SEARCH

MENU NAVIGATION