라틴어 문장 검색

In his ergo geometricam arithmeticamque medietatem perspeximus.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:15)
arithmetica, geometrica, armonica.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:2)
apparuit, arithmeticam vim geometrica atque musica esse antiquiorem et quod inlata non has simul inferret, sublata vero perimeret.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 2:2)
Haec autem huiusmodi invenietur, si duobus terminis constitutis, qui ipsi tribus creverint intervallis, longitudine latitudine et profunditate, duo huismodi termini medii fuerint constituti et ipsi tribus intervallis notati, qui vel ab aequalibus per aequales aequaliter sint producti vel ab inaequalibus ad inaequalia inaequaliter, vel ab inaequalibus ad aequalia aequaliter, vel quolibet alio modo, atque ita, cum armonicam proportionem custodiant alio tamen modo comparati faciant arithmeticam medietatem hisque geometrica medietas, quae inter utrasque versatur, deesse non possit.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:3)
illic enim et grammatica dividit et oratoria declamat et arithmetica numerat et geometrica metitur et musica ponderat et dia- lectica disputat et astrologia 1 praenoscit et architectonica struit et metrica modulatur.
(시도니우스 아폴리나리스, 편지들, 5권, Sidonius Nymphidio suo salutem 1:3)
Harum vero medietatum, id est arithmeticae atque armonicae, geometrica proportionalitas media esse notata est, quae vel in maioribus vel in minoribus terminis aequas numerorum qualitates in proportionalitate custodit.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:6)
Quod si conversim ponantur, ut non eisdem differentiis eadem qualitas proportionis eveniat, geometrica talis proportionalitas, non arithmetica nominatur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:4)
Rursus si gravitas particularum Fluidi in omnibus distantiis eadem sit, & distantiae sint in progressione Arithmetica, densitates erunt in progressione Geometrica, uti Vir Cl.\ Edmundus Halleius invenit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:22)
Si gravitas sit ut distantia, & quadrata distantiarum sint in progressione Arithmetica, densitates erunt in progressione Geometrica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:23)
& area AbNK augebitur vel diminuetur in progressione Arithmetica, dum vires CK in progressione Geometrica sumuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 29:6)
Rursus si inter eosdem x et xl xx constituam, statim geometrica medietas cum suis proprietatibus cunctis exoritur, arithmetica medietate pereunte.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 2:1)
Cuius haec ratio est, quoniam arithmetica dispositio aequas tantum per differentias dividit quantitates, geometrica vero terminos aequa proportione coniungit, at vero armonica ad aliquid quodammodo relata consideratione neque solum in terminis speculationem proportionis habet neque solum in differentiis, sed in utrisque communiter.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:2)
& velocitas erit ut longitudo GD, quae cum data CG componit longitudinem CD, in Progressione Geometrica decrescentem, interea dum spatium RSED augetur in Arithmetica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 10:2)
Iisdem positis, dico quod si spatia descripta sumantur in progressione Arithmetica, velocitates data quadam quantitate auctae erunt in progressione Geometrica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 9:1)
de solidis etiam, id est cybis et sphericis vel pyramidis, laterculis etiam vel tignulis et cuneis, quae omnia quidem geometricae propriae considerationis sunt, sed sicut ipsa geometriae scientia ab arithmetica velut quadam radice ac matre producta est, ita etiam eius figurarum semina in primis numeris invenimus, planum siquidem fecimus, quod omnes disciplinas haec interempta consumeret, quas minime constituta firmaret.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:5)

SEARCH

MENU NAVIGATION