라틴어 문장 검색

Nam in primo quadrato, quoniam ex uno fit, unus est in latere, in secundo, id est quaternario, quoniam ex uno et tribus procreatur, qui duo sunt termini, binario latus texitur.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:9)
Namque si in tribus terminis singuli relinquantur, binarius semper intererit.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:14)
et hi semper nascentur dispositis in ordinem a binario numero omnibus naturaliter paribus inparibusque terminis, si contra eas omnes a quinario numero inpares comparentur, ut primum primo, secundum secundo, tertium tertio caute et diligenter adponas, ut sit dispositio talis:
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 2:5)
ut binarius ad unum, quoniam duo sunt termini, duplam obtinet proportionem.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:9)
Novenarius igitur ad senarium sesqualter est, quorum est differentia ternarius, minorum vero terminorum, id est octonarii et senarii binarius differentia est, qui ad superiorem ternarium comparatus facit sesqualteram proportionem.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:7)
sin vero sint triplices proportiones maior terminus a minore termino duplicato minore termino differt, ut, si sint j iij viiij, tres ab uno binario differunt, in quem unitas, id est minor terminus duplicatus exundat;
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 9:5)
Nam in hac dispositione ij iiij v quaternarius ad binarium duplus est. Sed inter quaternarium et binarium ij sunt, inter quaternarium vero et maiorem terminum, id est quinque, j. Et ij ad j dupli sunt.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:3)
Metitur autem numerus numerum, quotiens vel semel vel bis vel tertio vel quotienslibet numerus ad numerum comparatus neque deminuta summa neque aucta ad comparati numeri terminum usque pervenerit, ut ij si ad vj compares, binarius numerus senarium tertio metietur.
(보이티우스, De Arithmetica, Liber primus, De prime et incompositio 1:6)
Nam cum vj ex binario ternarioque nascantur, tres binarium numerum uno superant, cunctique alii eiusdem modi sunt, ut primo et secundo ordine ad alterutrum multiplicatis terminis procreentur, ita ut quod nascitur ex duobus longilateris altrinsecus positis et bis medio tetragono tetragonus sit;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:11)
In numero vero pariter inpari, si fuerit unus in medio terminus, circum se positiorum terminorum, si in unum redigantur, medietas est, et idem eorum quoque, qui super hos sunt terminos, medietas est, atque hoc usque ad extremos omnium terminorum, ut in eo ordine, qui est pariter inparium numerorum, ij vj x iunctus binarius cum denario xxj explet, cuius senarius medietas invenitur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:15)
Nam si aequales terminos intermittas et uno sese in priore dispositione praetereant, si singulos intermittas, solius binarii notabitur differentia, sin vero duos praetereas, ternarii, si tres, quaternarii, si quattuor, quinarii.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:12)
Namque minorem, id est binarium, uno superat, id est ipsius medietate binarii, a quaternario vero uno relinquitur, quae pars quaternarii quarta est. Recte igitur dictum est, medium terminum in huiusmodi medietate eadem sui parte et minorem vincere et a maiore superari, sed non eisdem partibus vel minoris minorem transgredi vel maioris a maiore transcendi.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:12)
Videsne ut, cum superius in naturalis numeri dispositione se termini singulis praeterirent, praetermissis duobus et iiij unus ad iij et iiij ad quinarium comparati binarium solum in differentia retinuerint.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 2:1)
Si igitur duo prima latera propositae formulae, quae faciunt angulum ab uno ad x et x procedentia, respiciantur et his subteriores ordines comparentur, qui scilicet a iiij angulum incipientes in vicenos terminum ponunt, duplex, id est prima species multiplicitatis ostenditur ita, ut primus primum sola superet unitate, ut duo unum, secundus secundum binario supervadat, ut quaternarius binarium, tertius tertium tribus, ut senarius ternarium, quartus quartum quaternarii numerositate transcendat, ut viij quaternarium, et per eandem cuncti sequentiam sese minoris pluralitate praetereant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:1)
Tertia vero inter has sequentes quattuor, nona autem in ordine proportio est, quando tribus terminis positis quam proportionem medius terminus ad parvissimum custodit, eam retinet extremorum differentia ad minorum differentiam comparata, ut iiij vj vij. Etenim vj ad iiij sesqualter est, quorum est differentia binarius.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:10)

SEARCH

MENU NAVIGATION