라틴어 문장 검색

Si enim ponatur hic ordo i ii iiij viij xvi xxxii lxiiij una erit sola meidetas, id est viij, qui viij summae totius pars est octava, et sibi ipsi ad denominationem quantitatemque converitur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 14:2)
Obtinet autem, quae illi quoque recipiunt, quod quaedam partes eius respondent denominanturque secundum genus suum ad propriam quantitatem, ad similitudinem scilicet pariter paris numeri, aliae vero partes contrarium denominationem sumunt propriae quantitatis, ad pariter inparis scilicet formam.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:10)
Inaequalis vero quantitatis gemina divisio est. Secatur enim quod inaequale est in maius atque minus, quae contraria sibimet denominatione funguntur.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 2:1)
Quod si conversos superparticulares aliquis secundum haec praecepta convertat, continuo videat superpartientes adcrescere et ex sesqualtero quidem superbipartiens, ex sesquitertio supertripartiens procreatur et ceteri secundum communes denominationis species sine ulla ordinis interpolatione nascentur.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 28:2)
Corpus viribus conjunctis diagonalem parallelogrammi eodem tempore describere, quo latera separatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 12:1)
Si corpus dato tempore, vi sola M, ferretur ab A ad B, & vi sola N, ab A ad C, compleatur parallelogrammum ABDC, & vi utraq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 13:1)
Si in figura quavis AacE rectis Aa, AE, & curva acE comprehensa, inscribantur parallelogramma quotcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 6:1)
& compleantur parallelogramma aKbl, bLcm, cMdn, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 6:6)
Dein horum parallelogrammorum latitudo minuatur, & numerus augeatur in infinitum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 6:7)
Nam figurae inscriptae & circumscriptae differentia est summa parallelogrammorum Kl + Lm + Mn + Do, hoc est (ob aequales omnium bases) rectangulum sub unius basi Kb & altitudinum summa Aa, id est rectangulum ABla.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 7:1)
Eaedem rationes ultimae sunt etiam aequalitatis, ubi parallelogrammorum latitudines AB, BC, CD, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 9:1)
Sit enim AF aequalis latitudini maximae & compleatur parallelogrammum FAaf.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 10:1)
Hinc summa ultima parallelogrammorum evanescentium coincidit omni ex parte cum figura curvilinea.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 11:2)
Si in duabus figuris AacE, PprT, inscribantur (ut supra) duae parallelogrammorum series, sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 16:1)
Etenim ut sunt parallelogramma singula ad singula, ita (componendo) fit summa omnium ad summam omnium, & ita figura ad figuram;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 18:1)

SEARCH

MENU NAVIGATION