라틴어 문장 검색

revolventia describent Ellipses, & revolutiones temporibus aequalibus peragent;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 6:3)
) temporibus semper aequalibus, vel describent Ellipses in plano illo circa centrum C, vel periodos movendi ultro citroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 7:10)
) efficiunt ut corpora illa describant Ellipses ut prius, sed motu celeriore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 34:10)
Corpora autem T & L viribus motricibus SD × T & SD × L, (prius priore, posterius posteriore) aequaliter & secundum lineas parallelas TI & LK (ut dictum est) attracta, pergent (per Legum Corollarium quintum & sextum) circa centrum mobile D Ellipses suas describere, ut prius. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 34:15)
) vis qua Ellipsis circa umbilicum S describitur tendere debeat ad umbilicum illum, & esse quadrato distantiae PS reciproce proportionalis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:19)
& si axibus Hh, Kk describatur Ellipsis, deinde Ellipseos hujus revolutione circa axem majorem Hh describatur Sphaerois HPKhpk;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 18:14)
id adeo ob similitudinem orbis hujus, quem corpus agente uniformi vi centripeta describit, & orbis illius quem corpus in Ellipsi revolvente gyros peragens describit in plano quiescente.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 17:34)
Addatur jam corpus quartum V, & simili argumento concludetur hoc & punctum C Ellipses circa omnium commune centrum gravitatis B describere;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 35:1)
Nam Trajectoria descripta (eo quod PH + SP in Ellipsi, & PH - SP in Hyperbola aequatur axi) transibit per punctum P, & (per Lemma superius) tanget rectam TR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:12)
Sit sectio illa Conica ARPB & umbilicus inferior S. Et primo si Figura illa Ellipsis est, super hujus axe majore AB describatur semicirculus ADB, & per corpus decidens transeat recta DPC perpendicularis ad axem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 4:4)
Corpora plura quorum vires decrescunt in duplicata ratione distantiarum ab eorundem centris, moveri posse inter se in Ellipsibus, & radiis ad umbilicos ductis Areas describere temporibus proportionales quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 38:1)
Et si Luna, radio ad Terram ducto, aream describat tempori proportionalem, erit motus Nodi in Ellipsi ut area pDdm.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 4:2)
Quo facto, cape GK in ratione ad rotae perimetrum GEFG, ut est tempus quo corpus progrediendo ab A descripsit arcum AP, ad tempus revolutionis unius in Ellipsi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 17:6)
Cognoscatur etiam angulus tempori proportionalis, id est, qui sit ad quatuor rectos ut est tempus quo corpus descripsit arcum AP, ad tempus revolutionis unius in Ellipsi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:9)
& Ellipsis, centro O, semiaxibus OB, OV descripta, figuram aBKVT, eique aequale rectangulum Aa × BO, aequabit quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:8)

SEARCH

MENU NAVIGATION