라틴어 문장 검색

& si centro C radio CP describi intelligatur sphaera Pape;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 57:2)
& Terrae totius exterioris PapAPepE, quae Sphaerâ modò descriptâ altior est, particulae singulae conantur recedere hinc inde à plano QR, sitque conatus particulae cujusque ut ejusdem distantia à plano:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 57:4)
& vis qua Sphaerois trahit corpus P erit ad vim qua Sphaera, diametro AB descripta, trahit idem corpus, ut
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:7)
In Sphaera centro S intervallo SA descripta, si capiantur SI, SA, SP continue proportionales:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 100:1)
Ut & ubi gyrantia sunt etiam Sphaerae attrahentes, conditionis cujusvis jam descriptae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 45:2)
gravitas in loco Q in Terram, foret ad gravitatem in eodem loco Q sphaeram centro C radio PC vel QC descriptam, ut 126-2/15 ad 125-2/15.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:8)
Et eodem argumento gravitas in loco A in Sphaeroidem, convolutione Ellipseos APBQ circa axem AB descriptam, est ad gravitatem in eodem loco A in Sphaeram centro C radio AC descriptam, ut 125-2/15 ad 126-2/15.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:9)
In Sphaera ABCD, centro S descripta, locetur corpusculum P, & centro eodem S intervallo SP concipe Sphaeram interiorem PEQF describi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 17:1)
Eadem omnia, quae superius de motu corporum circa umbilicos Conicarum Sectionum demonstrata sunt, obtinent ubi Sphaera attrahens, formae & conditionis cujusvis jam descriptae, locatur in umbilico.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 44:2)
Est igitur gravitas in A in Sphaeram centro C radio AC descriptam, ad gravitatem in A in Terram ut 126 ad 125½, & gravitas in loco Q in Sphaeram centro C radio QC descriptam, est ad gravitatem in loco A in Sphaeram centro C radio AC descriptam, in ratione diametrorum (per Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:12)
Si ad Sphaerae alicujus AEB, centro S descriptae, particulas singulas aequales tendant aequales vires centripetae, & ad Sphaerae axem AB, in quo corpusculum aliquod P locatur, erigantur de punctis singulis D perpendicula DE, Sphaerae occurrentia in E, & in ipsis capiantur longitudines DN, quae sint ut quantitas DEq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 69:1)
Dicebat enim Gallus sphaerae illius alterius solidae atque plenae vetus esse inventum, et eam a Thalete Milesio primum esse tornatam, post autem ab Eudoxo Cnidio, discipulo, ut ferebat, Platonis, eandem illam astris stellisque, quae caelo inhaererent, esse descriptam;
(마르쿠스 툴리우스 키케로, 국가론, Liber Primus 36:2)
In ea capiatur LB semidiametro CB aequalis, & ducatur BD quae Sphaeram tangat in B. In AC & BD demittantur perpendiculares BE, DL, & vis qua particula Medii, secundum rectam FB oblique incidendo, Globum ferit in B, erit ad vim qua particula eadem Cylindrum ONGQ axe ACI circa Globum descriptum perpendiculariter feriret in b, ut LD ad LB vel BE ad BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:9)
Remanserant autem in castris duo viri, quorum unus vocabatur Eldad et alter Medad, super quos requievit spiritus; nam et ipsi descripti fuerant et non exierant ad tabernaculum. Cumque prophetarent in castris,
그때에 두 사람이 진영에 남아 있었는데, 한 사람의 이름은 엘닷이고 다른 사람의 이름은 메닷이었다. 그런데 명단에 들어 있으면서 천막으로 나가지 않은 이 사람들에게도 영이 내려 머무르자, 그들이 진영에서 예언하였다. (불가타 성경, 민수기, 11장26)
Hic est numerus filiorum Israel, qui descripti sunt a Moyse et Eleazaro sacerdote in campestribus Moab supra Iordanem contra Iericho;
이들이 모세와 엘아자르 사제가 사열한 이들이다. 모세와 엘아자르는 예리코 앞의 요르단 건너편 모압 벌판에서 이스라엘 자손들을 사열하였다. (불가타 성경, 민수기, 26장63)

SEARCH

MENU NAVIGATION