라틴어 문장 검색

At vero ubi duas meidetates habent, utraeque extremitates iuncate utrisque medietatibus aequales fiunt, ut xij et xxvj, cum iunxeris, fiunt xlviij.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 1:4)
Quod enim sub duabus medietatibus continetur, aequale est ei, quod sub extremis conficitur, vel quod ab una medietate nascitur, aequale est illi, quod sub utrisque extremitatibus continetur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 6:4)
Sin vero disiuncta sit, quod fit ex utrisque extremitatibus compositis, hoc ex duabus medietatibus redditur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:5)
vel si sit in quattuor terminis disiuncta proportio, quod fit sub utrisque extremitatibus, id duarum medietatum multiplicatione concrescat, ut, si sint ij iiij viij xvj, quod fit ex bis xvj, id ex quater viij reddatur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:3)
Si vero armonicam medietatem coniungere velim, xvj mihi numerus inter extremitates utrasque ponendus est, ut sit hoc modo:
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 3:1)
Geometricam vero si rationem vestiges, eius numeri, qui sub utrisque extremitatibus continetur, tetragonicum latus inquire, et hunc medium pone.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:8)
Est autem proprium in hac quoque dispositione, quod illud, quod continetur sub maiore termino et medietate duplum est eo, quod sub utrisque extremitatibus continetur.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:6)
Si vero inter iiij qui est tertius terminus aequa parte quarti quartum terminum superet et aequa primi a primo superetur, armonica huiusmodi proportio medietasque perspicitur, et quod continetur sub extremorum adgregatione et multiplicatione medietatis duplex est eo, quod sub utraque extremitate conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:6)
Et primum fit, si pares fuerint dispositiones, ut duae mediae partes sibi respondeant, post vero quae super ipsas sunt, sibi invicem converatntur, atque hoc idem fiat, donec uterque terminus extremitatis incurrat.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 13:2)
Extremitatis autem arcus utrumque tenus duo exprimunt Bospori, e regione sibi oppositi, Thracius et Cimmericus:
(암미아누스 마르켈리누스, 사건 연대기, Liber XXII: Julianus, 8장 13:1)
Inpariter par numerus est ex utrisque confectus et medietatis loco gemina extremitate concluditur, ut, quo ab utroque discrepet, eadem ad alterutrum congnatione iugatur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:1)
In utrisque enim ternarius differentia est et iunctae extremitates medietate duplae sunt.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:13)
In quattuor enim terminis si fuerit quemadmodum primus ad tertium sic secundus ad quartum, proportionum ratione scilicet custodita, geometrica medietas explicatur, et quod continetur sub extremitatibus, aequum erit ei, quod sub utraque medietate ad se invicem multiplicata conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:4)
Utraque enim comparatio sesqualtera proportio est, et quod continetur sub extremitatibus, idem est ei, quod fit ex mediis.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:9)
Qua vero disciplina huiusmodi medietates repperire possimus expediendum est. Datis duobus terminis si arithmeticam medietatem constituere oportebit, utraque est extremitas coniungenda quodque ex ea copulatione colligitur dividendum, isque numerus, qui ex divisioneredactus est, arithmeticam medietatem inter extremitates locatus efficiet;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:1)

SEARCH

MENU NAVIGATION