-
Ergo AC est ad AO, id est ad SK, ut CD × Cc ad SY × Dd. Porro corporis descendentis velocitas in C est ad velocitatem corporis circulum intervallo SC circa centrum S describentis in dimidiata ratione AC ad AO vel SK (per Theor. IX.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 21:5)
-
circumferentiarum circulorum intervallum DE vel IN quam minimum, & habeant corpora in D & I velocitates aequales.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:6)
-
dein centro I & intervallo AI circulum describere.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 24:2)
-
& corporis jam recta descendentis in linea CB velocitas fiet ad velocitatem corporis centro B interuallo BC circulum describentis, in dimidiata ratione ipsius BQq.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:22)
-
VIII) aequalis est velocitati corporis dimidio intervalli SP circulum circa idem S uniformiter describentis.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 16:3)
-
V & intervallo AB describatur circulus FH.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:8)
-
Centro P, intervallo PS describe circulum FG.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:2)
-
Eodem recidit si centro i, intervallo IH describatur circulus secans BD in X, producatur iX ad Y, ut sit iY aequalis IF, & agatur Yf ipsi BD parallela.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 125:2)
-
O & intervallo OG describe circulum EFG, & super regula GH, ceu fundo, progrediatur rota GEF revolvendo circa axem suum, & interea puncto suo A describendo Trochoidem ALI.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 17:5)
-
N & intervallo AN descriptus circulus secabit Ellipsin in corporis loco quaesito P quam proxime.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 21:13)
-
N & intervallo AN describe circulum qui secet Ellipsin in P, ut supra.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 23:4)
-
Si figura BED Parabola est, dico quod corporis cadentis velocitas in loco quovis C aequalis est velocitati qua corpus centro B dimidio intervalli sui BC circulum uniformiter describere potest.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 14:1)
-
Centro C intervallis quibusvis describantur circuli concentrici DI, EK rectae AC in D & E, curvaeq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:2)
-
C & intervallo Ck describatur circulus ke occurrens rectae PD in e, & erigantur curvarum ALMm, BFGg, abzv, dcxw ordinatim applicatae em, eg, ev, ew.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 17:6)
-
Centro item C & intervallo quovis describatur circulus nom secans rectam CP in n, Rotae perimetrum Bp in o & viam curvilineam AP in m, centroq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:9)