라틴어 문장 검색

Punctum igitur alio rursus intervallo a linea vincitur, ipsa scilicet, quae reliqua est, longitudine.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:40)
Ex hoc igitur principio, id est ex unitate, prima omnium longitudo succrescit, quae a binarii numeri principio in cunctos sese numeros explicat, quoniam primum intervallum linea est. Duo vero intervalla sunt longitudo et latitudo, id est linea et superficies.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:24)
ipsa vero nec intervalli nec longitudinis capax, quemadmodum punctum principium quidem lineae est atque intervalli, ipsum vero nec intervallum nec linea.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:12)
Est igitur punctum primi intervalli principium, non tamen intervallum, et lineae caput, sed nondum linea, sicut linea quoque superficieiprincipium est, sed ipsa superficies non est, et secundi intervalli caput est, secundum tamen intervallum ipsa non retinet.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:42)
Haec autem superficies uno tantum intervallo solidi corporis demensione superatur, quae uno rursus intervallo lineam vincit, quae longitudinis naturam retinens latitudinis expers est;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:38)
quae linea, quod unius est intervalli sortita naturam, a superficie uno intervallo, a soliditate duobus spatiis vincitur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:39)
Centro C intervallo Cn vel Ck describi intelligetur circulus secans lineas mr, mn productas in s & t, & erit rectangulum mn × mt aequale rectangulo mk × ms, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 6:20)
Ipsius autem theatri conformatio sic est facienda, uti, quam magna futura est perimetros imi, centro medio conlocato circumagatur linea rotundationis, in eaque quattuor scribantur trigona paribus lateribus, intervallis extremam lineam circinationis tangant, quibus etiam in duodecim signorum caelestium astrologi ex musica convenientia astrorum ratiocinantur.
(비트루비우스 폴리오, 건축술에 관하여, LIBER QUINTUS, 6장1)
Centro C, intervallis CD, Cd describantur circuli DT, dt, Lineae curvae STtR occurrentes in T & t.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 51:4)
& linea emergentiae KI producta occurrat HM in L. Centro L intervallo LI describatur circulus, secans tam HM in P & Q, quam MI productam in N;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:6)
Vis attractionis vel impulsus agendo secundum lineas perpendiculares nil mutat motum secundum parallelas, & propterea corpus hoc motu conficiet aequalibus temporibus aequalia illa secundum parallelas intervalla, quae sunt inter lineam AG & punctum H, interq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 9:4)
quod corporis in linea RPB circa centrum S moventis velocitas in loco quovis P sit ad velocitatem corporis intervallo SP circa idem centrum circulum describentis in dimidiata ratione rectanguli ½L × SP ad SY quadratum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:9)
Ejus generis est quod, si recta linea per punctum quodvis positione datum ducatur, quae datam Conisectionem in punctis duobus intersecet, & intersectionum intervallum bisecetur, punctum bisectionis tanget aliam Conisectionem ejusdem speciei cum priore, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 104:2)
Cumque transisset David ex adverso et stetisset in vertice montis de longe, et esset grande intervallum inter eos,
다윗은 맞은쪽으로 건너가 상대와 거리를 멀리 두고 산꼭대기에 서서, (불가타 성경, 사무엘기 상권, 26장13)
Et finxit duas columnas aereas, decem et octo cubitorum altitudinis columnam unam, et linea duodecim cubitorum ambiebat columnam, et grossitudo eius quattuor digitorum, et intrinsecus cava erat; sic et columna altera.
그가 청동을 부어 기둥 둘을 만들었다. 한 기둥의 높이는 열여덟 암마이고 그 둘레는 열두 암마짜리 줄로 잴 수 있었는데, 다른 기둥도 마찬가지였다. (불가타 성경, 열왕기 상권, 7장15)

SEARCH

MENU NAVIGATION