-
Tres enim tantum doctrinarum revolutiones et periodi recte numerari possunt:
- (FRANCIS BACON, NOVUM ORGANUM, Liber Primus 173:4)
-
Itaque existimant, esse quosdam scientiarum, per temporum et aetatum mundi revolutiones, fluxus et refluxus;
- (FRANCIS BACON, NOVUM ORGANUM, Liber Primus 221:4)
-
Dicamus igitur de novarum sectarum caussis atque consiliis aliquid circa eas inspergamus, quatenus humani ingeni insinnitas tantis revolutionibus moras iniicere aut remedia exhibere poterit.
- (FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, LVI. [ = English LVIII] DE VICISSITUDINE RERUM 4:6)
-
ad latera vasis, figuram concavam induens, (ut ipse expertus sum) et incitatiore semper motu ascendet magis & magis, donec revolutiones in aequalibus cum vase temporibus peragendo, quiescat in eodem relative.
- (아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 41:8)
-
Proinde in sequentibus, siquando quantitates tanquam ex particulis constantes consideravero, vel si pro rectis usurpavero lineolas curvas, nolim indivisibilia sed evanescentia divisibilia, non summas & rationes partium determinatarum, sed summarum & rationum limites semper intelligi, vimq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 58:9)
-
in figura indefinite parva QRPT lineola nascens QR, dato tempore, est ut vis centripeta (per Leg. II.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 45:2)
-
vis centripeta ut lineola QR directe & quadratum temporis inverse.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 45:5)
-
Et aequalia erunt revolutionum in Figuris universis circa centrum idem factarum periodica tempora.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 69:2)
-
Et si velocitas, quacum corpus exit de loco suo P, ea sit, qua lineola PR in minima aliqua temporis particula describi possit, & vis centripeta potis sit eodem tempore corpus idem movere per spatium QR:
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 25:2)
-
÷ QR quae ultimo fit ubi lineolae PR, QR in infinitum diminuuntur.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 25:4)
-
prima erat seu proxima, post unam revolutionem secunda erit, post duas tertia, & sic deinceps:
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:20)
-
Unde cum quantitates illae post singulas revolutiones redeunt ad magnitudines primas, aequatio redibit ad formam primam, adeoq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:22)
-
Quo facto, cape GK in ratione ad rotae perimetrum GEFG, ut est tempus quo corpus progrediendo ab A descripsit arcum AP, ad tempus revolutionis unius in Ellipsi.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 17:6)
-
capiatur angulus GCF in ea ratione ad angulos quatuor rectos, quam habet tempus datum, quo corpus descripsit arcum quaesitum AP, ad tempus periodicum seu revolutionis unius in Ellipsi:
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 21:9)
-
Cognoscatur etiam angulus tempori proportionalis, id est, qui sit ad quatuor rectos ut est tempus quo corpus descripsit arcum AP, ad tempus revolutionis unius in Ellipsi.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:9)