라틴어 문장 검색

VIIII vero si inter utrosque terminos ponam, ut sint v viiij xlv, fit armonica medietas, ut qua summa maximus numerus parvissimum praecedit, eadem maior differentia minorem differentiam vincat.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 4:5)
Prima enim quae est earum, in ordine vero septima medietas, hoc modo coniungitur, cum in tribus terminis quemadmodum est maximus terminus ad ultimum, sic maximi et parvissimi termini differentia ad minorum differentiam terminorum, ut in hac dispositione:
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:5)
Liquet autem oppositam et quodammodo contrariam esse hanc medietatem armonicae medietati idcirco, quod in illa quemadmodum est maximus terminus ad parvissimum, sic terminorum maiorum differentia ad differentiam minorum, hic autem e contrario.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 1:9)
In triplicibus quoque extremitatibus maior differentia ad minorem differentiam quadrupla est et bis diapason symphoniam emittit.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 10:1)
Diapason vero et diapente, quae triplicis obtinent rationem, fit ab extremitatum differentia ad differentiam minorem.
(보이티우스, De Arithmetica, Liber secundus, De geometrica armonia 2:4)
Atqui jam probatum est quod differentia minor sit quam data quaevis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 20:12)
Differentia minor est parte quadringentesima motus totius, & ab Orbis Lunaris Excentricitate & Inclinatione ad planum Eclipticae oriri videtur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:48)
Sexta vero medietas est, quando tribus terminis constitutis quemadmodum est maior terminus ad medium, sic minorum terminorum differentia ad differentiam maximorum.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:1)
Differentiae tripli minores
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 18:1)
Nam in duplici proportione medius terminus ad minoris suique differentiam quadruplus invenitur.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 9:2)
minor vero differentia, id est ternarii et binarii, unus iiij autem uno quadrupla maior est relatione, quae comparatio bis diapason consonantiam tenet.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 10:3)
In dispositione enim, quae est j iiij vj, maximus terminus ad medium sesqualter est, differentia vero minorum, id est unius et iiij ternarius est, maiorum vero, id est quaternarii et senarii, binarius.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:2)
Eodem autem modo haec quoque medietas geometricae contraria est, quemadmodum et quinta, propter proportionem differentiarum a minoribus ad maiores terminos conversam.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:4)
Pone ergo attractiones omnes acceleratrices in corpus maximum esse inter se reciproce ut quadrata distantiarum, & augendo corporis maximi distantiam, donec rectarum ab hoc ad reliqua ductarum minores sint differentiae & inclinationes ad invicem quam datae quaevis, perseverabunt motus partium Systematis inter se absq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 41:5)
Ergo quemadmodum est maximus terminus ad parvissimum, sic minorum terminorum differentia est ad differentiam maximorum.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 1:8)

SEARCH

MENU NAVIGATION