라틴어 문장 검색

potest QS ipsi AC perpendicularis, ad quam si ab Hyperbolae hujus puncto quovis Z demittatur normalis ZS, haec fuerit ad AZ ut est differentia inter AZ & CZ ad AC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 27:8)
Sit circuli hujus centrum O. Ab hoc centro ad Regulam MN, ad quam altera illa crura CN, BN interea concurrebant dum Trajectoria describebatur, demitte normalem OH circulo occurrentem in K & L. Et ubi crura illa altera CK, BK concurrant ad punctum istud K quod Regulae proprius est, crura prima CP, BP parallela erunt axi majori & perpendicularia minori;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 102:5)
E regione vero cum normaliter steterit contra, lumine pleno fulgebit, domicilium septimi retinens signi, et in eodem tum etiam agens, paululumque progressa, minuitur, quem habitum vocamus ἀπόκρουσιν, et usque easdem formas repetit senescendo, traditurque doctrina multiplici congruente, non nisi tempore intermenstrui deficere visam usquam lunam.
(암미아누스 마르켈리누스, 사건 연대기, Liber XX , 3장 11:2)
& actae rectae OD parallela sit AC & perpendicularis DC.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:4)
agantur pH, NH, prior horizonti, posterior plano pG perpendicularis;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:2)
Si filo pN perpendiculare esset planum aliquod pQ secans planum alterum pG in linea ad horizontem parallela;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:4)
Unde tensio fili hujus obliqui erit ad tensionem fili alterius perpendicularis PN, ut pN ad pH.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:8)
) distinguendus est in duos, unum huic plano perpendicularem, alterum eidem parallelum:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:4)
motus autem paralleli, propterea quod corpora agant in se invicem secundum lineam huic plano perpendicularem, retinendi sunt iidem post reflexionem atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:5)
antea, & motibus perpendicularibus mutationes aequales in partes contrarias tribuendae sunt sic, ut summa conspirantium & differentia contrariorum maneat eadem quae prius.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:6)
Similiter in Trochlea seu Polyspasto vis manus funem directe trahentis, quae sit ad pondus vel directe vel oblique ascendens ut velocitas ascensus perpendicularis ad velocitatem manus funem trahentis, sustinebit pondus.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 40:7)
Vires quibus cuneus urget partes duas ligni fissi est ad vim mallei in cuneum, ut progressus cunei secundum determinationem vis a malleo in ipsum impressae, ad velocitatem qua partes ligni cedunt cuneo, secundum lineas faciebus cunei perpendiculares.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 40:10)
Sit arcus ille AB, tangens ejus AD, subtensa anguli contactus ad tangentem perpendicularis BD, subtensa arcus AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 50:2)
Huic subtensae AB & tangenti AD perpendiculares erigantur AG, BG, concurrentes in G;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 50:3)
In hoc casu sensus Propositionis est, quod vis illa quae ex omnibus componitur, tendit ad punctum S. Porro si vis aliqua agat secundum lineam superficiei descriptae perpendicularem, haec faciet corpus deflectere a plano sui motus, sed quantitatem superficiei descriptae nec augebit nec minuet, & propterea in compositione virium negligenda est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 12:2)

SEARCH

MENU NAVIGATION