라틴어 문장 검색

Nunc autem nobis de his numeris sermo futurus est, qui circa figuras geometricas et earum spatia demensionesque versantur, id est de linearibus numeris et de triangularibus vel quadratis ceterisque, quos sola pandit plana demensio, nec non de inaequali laterum compositione coniunctis;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:4)
Linearis numerus est a duobus inchoans adiecta semper unitate in unum eundemque ductum quantitatis explicata congeries, ut est id, quod subiecimus.
(보이티우스, De Arithmetica, Liber secundus, De numero lineari 1:3)
Nam quoniam lineares numeros esse diximus, qui ab uno profecti in infinitum currerent, ut sunt j ij iij iiij v vj vij viij viiij x, his autem ordinatim compositis et ad se invicem cum distantia iunctis superficies nascebantur, ut, si unum et duo iungeres, primus triangulus nasceretur, id est tres, et cum his adiungeremus tertium, id est ternarium, senarius triangulus rursus occurreret, et post hos tetragoni uno intermisso, pentagoni vero duobus, exagoni tribus, eptagoni relictis quattuor nascebantur:
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:3)
limite termino, ut "limes agro positus". ne signare quidem 'signare' notare, propterea quod, cum agri colonis dividerentur, fossa ducebatur ab oriente ad occidentem, quae cardo nuncupabatur, et alia de septentrione ad meridiem, qui decimanus limes vocabatur, et alii minores erant in obliquum discreti, qui lineares appellabantur et agros per centurias sive per iugera divisos coercebant.
(마우루스 세르비우스 호노라투스, Commentary on the Georgics of Vergil, 1권, commline 1261)
At si Nodi constituantur in Octantibus post quadraturas, id est inter C & A, D & B, intelligetur ex modo expositis quod, in transitu corporis P a Nodo alterutro ad gradum inde nonagesimum, inclinatio plani perpetuo minuitur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 62:10)
Et simili ratiocinio inclinatio magis augetur quam diminuitur, ubi nodi sunt in Octantibus alteris inter A & D, B & C. Inclinatio igitur ubi Nodi sunt in Syzygiis est omnium maxima.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 62:16)
Hi sunt errores lineares corporis P;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 68:9)
hac ratione maximus decrescentis inclinationis motus fit in Quadraturis Nodorum, & minimus inclinationis angulus in Octantibus post Quadraturas;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 72:15)
dein maximus reclinationis motus in Syzygiis & maximus angulus in Octantibus proximis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 72:16)
& EF, FG lineolas Physicas seu Medii partes lineares punctis illis interjectas, & successive translatas in loca [epsilon][phi], [phi][gamma] & ef, fg.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:7)
& Medii pars linearis [epsilon][gamma] lege praescripta movetur, id est lege oscillantis Penduli:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:8)
estque par ratio partium omnium linearium ex quibus Medium totum componitur. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:9)
adeoque in transitu Lunae à Syzygiis ad Quadraturas, ubi hora tertia Solaris praecedit tertiam Lunarem, maxima aquae altitudo praecedet etiam tertiam Lunarem, idque maximo intervallo paulo post Octantes Lunae;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 14:7)
Exponatur vis maxima EL in Octantibus per aream FK × Kk rectangulo ½SP × Pp aequalem.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:20)
Haec ita se habent ubi Variatio in Octantibus est magnitudinis mediocris.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 31:2)

SEARCH

MENU NAVIGATION