-
post unam oscillationem ad punctum V. Est RV retardatio ex resistentia aeris.
- (아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:10)
-
Tollatur corpus B & inveniatur locus v, a quo si corpus A demittatur & post unam oscillationem redeat ad locum r, sit st pars quarta ipsius rv sita in medio, & per chordam arcus tA exponatur velocitas quam corpus A proxime post reflexionem habuit in loco A. Nam t erit locus ille verus & correctus ad quem corpus A, sublata aeris resistentia, ascendere debuisset.
- (아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:17)
-
J intersectio linearum BG, AG ultimo facta ubi puncta D, B accedunt usq; ad A. Manifestum est quod distantia GJ minor esse potest quam assignata quaevis.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 50:5)
-
Sit H eorum intersectio communis, & umbilicis S, H, axe illo dato describatur Trajectoria.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:10)
-
Habitis autem duobus locis rectilineis, habetur punctum quaesitum Z in earum intersectione, Q. E. I.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 27:13)
-
b in intersectionem rectarum AP, DP adeoq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 12:11)
-
Igitur si figura rectilinea in aliam transmutanda est, sufficit rectarum intersectiones transferre, & per easdem in figura nova lineas rectas ducere.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 68:1)
-
Nam quoties duae sectiones conicae obvenerint, quarum intersectione Problema solvi potest, transmutare licet unum earum in circulum.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 69:2)
-
Ejus generis est quod, si recta linea per punctum quodvis positione datum ducatur, quae datam Conisectionem in punctis duobus intersecet, & intersectionum intervallum bisecetur, punctum bisectionis tanget aliam Conisectionem ejusdem speciei cum priore, atq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 104:2)
-
& propterea rectae cujusvis positione datae intersectio cum spirali inveniri etiam potest per aequationem finitam.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:7)
-
ascendit ad tot dimensiones quot sunt intersectiones.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:9)
-
Quoniam duarum sectionum Conicarum quatuor esse possunt intersectiones, non potest aliqua earum generaliter inveniri nisi per aequationem quatuor dimensionum, qua omnes simul inveniantur.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:11)
-
Nam si intersectiones illae seorsim quaerantur, quoniam eadem est omnium lex & conditio, idem erit calculus in casu unoquoq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:12)
-
& propterea eadem semper conclusio, quae igitur debet omnes intersectiones simul complecti & indifferenter exhibere.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:13)
-
Eadem de causa intersectiones binae rectarum & sectionum Conicarum prodeunt semper per aequationes duarum dimensionum;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:16)