라틴어 문장 검색

& haec figura diminuendo in eadem ratione diametrum tertiam, quae diametris duabus AP, PQ perpendicularis est, vertitur in dictam Sphaeroidem, & gravitas in A, in casu utroque, diminuitur in eadem ratione quam proximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:11)
Sit NKRM Sectio Conica cujus ordinatim applicata ER, ipsi PE perpendicularis, aequetur semper longitudini PD, quae ducitur ad punctum illud D, in quo applicata ista Sphaeroidem secat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:3)
& actae rectae OD parallela sit AC & perpendicularis DC.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:4)
agantur pH, NH, prior horizonti, posterior plano pG perpendicularis;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:2)
Si filo pN perpendiculare esset planum aliquod pQ secans planum alterum pG in linea ad horizontem parallela;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:4)
Unde tensio fili hujus obliqui erit ad tensionem fili alterius perpendicularis PN, ut pN ad pH.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:8)
) distinguendus est in duos, unum huic plano perpendicularem, alterum eidem parallelum:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:4)
motus autem paralleli, propterea quod corpora agant in se invicem secundum lineam huic plano perpendicularem, retinendi sunt iidem post reflexionem atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:5)
antea, & motibus perpendicularibus mutationes aequales in partes contrarias tribuendae sunt sic, ut summa conspirantium & differentia contrariorum maneat eadem quae prius.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:6)
Similiter in Trochlea seu Polyspasto vis manus funem directe trahentis, quae sit ad pondus vel directe vel oblique ascendens ut velocitas ascensus perpendicularis ad velocitatem manus funem trahentis, sustinebit pondus.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 40:7)
Vires quibus cuneus urget partes duas ligni fissi est ad vim mallei in cuneum, ut progressus cunei secundum determinationem vis a malleo in ipsum impressae, ad velocitatem qua partes ligni cedunt cuneo, secundum lineas faciebus cunei perpendiculares.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 40:10)
Sit arcus ille AB, tangens ejus AD, subtensa anguli contactus ad tangentem perpendicularis BD, subtensa arcus AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 50:2)
Huic subtensae AB & tangenti AD perpendiculares erigantur AG, BG, concurrentes in G;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 50:3)
In hoc casu sensus Propositionis est, quod vis illa quae ex omnibus componitur, tendit ad punctum S. Porro si vis aliqua agat secundum lineam superficiei descriptae perpendicularem, haec faciet corpus deflectere a plano sui motus, sed quantitatem superficiei descriptae nec augebit nec minuet, & propterea in compositione virium negligenda est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 12:2)
Si corpus P revolvendo circa centrum S, describat lineam quamvis curvam APQ, tangat vero recta ZPR curvam illam in puncto quovis P, & ad tangentem ab alio quovis curvae Q agatur QR distantiae SP parallela, ac demittatur QT perpendicularis ad distantiam SP:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 43:1)

SEARCH

MENU NAVIGATION