라틴어 문장 검색

spatium AC, quod corpus de loco A perpendiculariter cadendo tempore dato describit, si modo tempori proportionalis capiatur area ABD, & a puncto D ad rectam AB demittatur perpendicularis DC. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 4:11)
In ea capiatur LB semidiametro CB aequalis, & ducatur BD quae Sphaeram tangat in B. In AC & BD demittantur perpendiculares BE, DL, & vis qua particula Medii, secundum rectam FB oblique incidendo, Globum ferit in B, erit ad vim qua particula eadem Cylindrum ONGQ axe ACI circa Globum descriptum perpendiculariter feriret in b, ut LD ad LB vel BE ad BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:9)
quia si immittatur perpendiculariter tenendo manum superius, cito manum adurit;
(FRANCIS BACON, NOVUM ORGANUM, Liber Secundus 234:2)
per centrum O agatur recta KOL filis perpendiculariter occurrens in K & L, centroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:2)
& actae rectae OD parallela sit AC & perpendicularis DC.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:4)
agantur pH, NH, prior horizonti, posterior plano pG perpendicularis;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:2)
Si filo pN perpendiculare esset planum aliquod pQ secans planum alterum pG in linea ad horizontem parallela;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:4)
urgeret illud haec plana viribus pN, HN perpendiculariter, nimirum planum pQ vi pN & planum pG vi HN.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:6)
Unde tensio fili hujus obliqui erit ad tensionem fili alterius perpendicularis PN, ut pN ad pH.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:8)
) distinguendus est in duos, unum huic plano perpendicularem, alterum eidem parallelum:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:4)
motus autem paralleli, propterea quod corpora agant in se invicem secundum lineam huic plano perpendicularem, retinendi sunt iidem post reflexionem atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:5)
antea, & motibus perpendicularibus mutationes aequales in partes contrarias tribuendae sunt sic, ut summa conspirantium & differentia contrariorum maneat eadem quae prius.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:6)
Similiter in Trochlea seu Polyspasto vis manus funem directe trahentis, quae sit ad pondus vel directe vel oblique ascendens ut velocitas ascensus perpendicularis ad velocitatem manus funem trahentis, sustinebit pondus.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 40:7)
Vires quibus cuneus urget partes duas ligni fissi est ad vim mallei in cuneum, ut progressus cunei secundum determinationem vis a malleo in ipsum impressae, ad velocitatem qua partes ligni cedunt cuneo, secundum lineas faciebus cunei perpendiculares.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 40:10)
Sit arcus ille AB, tangens ejus AD, subtensa anguli contactus ad tangentem perpendicularis BD, subtensa arcus AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 50:2)

SEARCH

MENU NAVIGATION