라틴어 문장 검색

quae sit earum , quae obsidionalis, quae civica, quae muralis, quae castrensis, quae navalis, quae ovalis, quae oleaginea.
(아울루스 겔리우스, 아테네의 밤, Liber Quintus, VI 1:2)
est ea quoque corona quae ovalis dicitur, est item postrema oleaginea, qua uti solent qui in proelio non fuerunt sed triumphum procurant.
(아울루스 겔리우스, 아테네의 밤, Liber Quintus, VI 4:1)
Ovalis corona murtea est;
(아울루스 겔리우스, 아테네의 밤, Liber Quintus, VI 23:1)
Figurae de quattor modi ut polygona varas in triangulis resolviatur
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 1:1)
pallenen hoc ideo dixit, quia Proteus, antequam in Aegy- ptum commigraret, Thraciae fuit incola, ubi habuit uxorem Toronen, filios Telegonum et Polygonum.
(마우루스 세르비우스 호노라투스, Commentary on the Georgics of Vergil, 4권, commline 3901)
In circulo quovis describi intelligatur Polygonum laterum quotcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 36:2)
Et si corpus in Polygoni lateribus data cum velocitate movendo, ad ejus angulos singulos a circulo reflectatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 36:3)
summa virium in dato tempore erit ut velocitas illa & numerus reflexionum conjunctim, hoc est (si Polygonum detur specie) ut longitudo dato illo tempore descripta & longitudo eadem applicata ad Radium circuli, id est ut quadratum longitudinis illius applicatum ad Radium;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 36:5)
si Polygonum lateribus infinite diminutis coincidat cum circulo, ut quadratum arcus dato tempore descripti applicatum ad radium.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 36:7)
Nulla extat figura Ovalis cujus area, rectis pro lubitu abscissa, possit per aequationes numero terminorum ac dimensionum finitas generaliter inveniri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 9:1)
Intra Ovalem detur punctum quodvis, circa quod ceu polum revolvatur perpetuo linea recta, & interea in recta illa exeat punctum mobile de polo, pergatq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:1)
semper ea cum velocitate, quae sit ut rectae illius intra Ovalem longitudo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:2)
Jam si area Oualis per finitam aequationem inveniri potest, invenietur etiam per eandem aequationem distantia puncti a polo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:4)
Nequit ergo intersectio rectae & spiralis per aequationem finitam generaliter inveniri, & idcirco nulla extat Ovalis cujus area, rectis imperatis abscissa, possit per talem aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:25)
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissae proportionale, probari potest quod longitudo perimetri nequit per finitam aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 11:1)

SEARCH

MENU NAVIGATION