라틴어 문장 검색

Quae scilicet magna est alteritatis vis. Omnis enim infinita et indeterminata potentia ab aequalitatis natura et a suis se finibus continente substantia discedens aut in maius exuberat aut in minora decrescit.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum quadrati ex parte altera longioribus vel parte altera longiores ex quadratis fiant 1:3)
Ad celeritatem onerandi subductionesque paulo facit humiliores quam quibus in nostro mari uti consuevimus, atque id eo magis, quod propter crebras commutationes aestuum minus magnos ibi fluctus fieri cognoverat; ad onera, ad multitudinem iumentorum transportandam paulo latiores quam quibus in reliquis utimur maribus.
(카이사르, 갈리아 전기, 5권, 1장2)
quo perspecto statim occurrit naturali quadam prudentia, non his subductionibus, quas isti docent, quid faciat causam, id est, quo sublato controversia stare non possit;
(마르쿠스 툴리우스 키케로, 웅변가론, LIBER SECUNDUS 132:2)
Sin corpora obviam eant, aequalis erit subductio de motu utriusq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 22:5)
movetur, si modo vis centripeta sumatur, quae restat post subductionem vis totius agentis in corpus illud alterum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 19:6)
adeo in aequatione quavis, qua relatio inter abscissam AD & ordinatam DG habetur, indeterminatae illae AD & DG ad unicam tantum dimensionem ascendunt, scribendo in hac aequatione OA × AB ÷ ad pro AD, & OA × dg ÷ ad pro DG, producetur aequatio nova, in qua abscissa nova ad & ordinata noua dg ad unicam tantum dimensionem ascendent, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:11)
Indeterminatae ad, dg in aequatione secunda & AD, DG in prima ascendent semper ad eundem dimensionum numerum, & propterea lineae, quas puncta G, g tangunt, sunt ejusdem ordinis Analytici.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:15)
habeant rationem ad invicem, & recta CD, qua puncta indeterminata C, D junguntur secetur in ratione data in K:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 79:2)
Igitur si ad rectam CV positione datam erigatur perpendiculum VP longitudinis indeterminatae, jungaturq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 13:2)
Numerator ille A^n seu {T - X}^n in seriem indeterminatam per Methodum nostram Serierum convergentium reducta, evadit T^n - nXT^{n - 1} + {nn - n}÷2 Xq.T^{n - 2} &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:5)
additione & subductione generatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 24:4)
Has quantitates ut indeterminatas & instabiles, & quasi motu fluxuve perpetuo crescentes vel decrescentes hic considero, & eorum incrementa vel decrementa momentanea sub nomine momentorum intelligo:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 24:6)
Decrescit igitur area EDT uniformiter ad modum temporis futuri, per subductionem datarum particularum DTV, & propterea tempori ascensus futuri proportionalis est. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 19:10)
Decrescit igitur area EDT uniformiter singulis temporis particulis aequalibus, per subductionem particularum totidem datarum DTV, & propterea tempori proportionalis est. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 22:20)
Igitur area PIGR per datorum momentorum subductionem uniformiter decrescente, crescunt area Y in ratione PIGR - Y, & area Z in ratione PIGR - Z. Et propterea si areae Y & Z simul incipiant & sub initio aequales sint, hae per additionem aequalium momentorum pergent esse aequales, & aequalibus itidem momentis subinde decrescentes simul evanescent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 33:1)

SEARCH

MENU NAVIGATION