라틴어 문장 검색

Sit NKRM Sectio Conica cujus ordinatim applicata ER, ipsi PE perpendicularis, aequetur semper longitudini PD, quae ducitur ad punctum illud D, in quo applicata ista Sphaeroidem secat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:3)
A Sphaeroidis verticibus A, B ad ejus axem AB erigantur perpendicula AK, BM ipsis AP, BP aequalia respective, & propterea Sectioni Conicae occurrentia in K & M;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:4)
Sit autem Sphaeroidis centrum S & semidiameter maxima SC:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:6)
Et eodem computando fundamento invenire licet vires segmentorum Sphaeroidis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 38:1)
Quod si corpusculum intra Sphaeroidem in data quavis ejusdem diametro collocetur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:2)
Per corpus illud P agantur tum semidiameter SPA, tum rectae duae quaevis DE, FG Sphaeroidi hinc inde occurrentes in D & E, F & G:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:6)
PCM, HLN superficies Sphaeroidum duarum interiorum, exteriori similium & concentricarum, quarum prior transeat per corpus P & secet rectas DE & FG in B & C, posterior secet easdem rectas in H, I & K, L. Habeant autem Sphaeroides omnes axem communem, & erunt rectarum partes hinc inde interceptae DP & BE, FP & CG, DH & IE, FK & LG sibi mutuo aequales;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:8)
Et par est ratio virium materiae omnis extra Sphaeroidem intimam PCBM.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:15)
Et eodem argumento gravitas in loco A in Sphaeroidem, convolutione Ellipseos APBQ circa axem AB descriptam, est ad gravitatem in eodem loco A in Sphaeram centro C radio AC descriptam, ut 125-2/15 ad 126-2/15.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:9)
Est autem gravitas in loco A in Terram, media proportionalis inter gravitates in dictam Sphaeroidem & Sphaeram, propterea quod Sphaera, diminuendo diametrum PQ in ratione 101 ad 100, vertitur in figuram Terrae;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:10)
& haec figura diminuendo in eadem ratione diametrum tertiam, quae diametris duabus AP, PQ perpendicularis est, vertitur in dictam Sphaeroidem, & gravitas in A, in casu utroque, diminuitur in eadem ratione quam proximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:11)
Fortasse, qui Archimedis libros legit, dicet non posse fieri veram ex aqua librationem, quod ei placet aquam non esse libratam, sed sphaeroides habere schema et ibi habere centrum, quo loci habet orbis terrarum.
(비트루비우스 폴리오, 건축술에 관하여, LIBER OCTAVUS, 5장8)
hoc autem, sive plana est aqua seu sphaeroides, necesse est, extrema capita dextra ac sinistra, cum librata regula erit, pariter sustinere regulam aquam;
(비트루비우스 폴리오, 건축술에 관하여, LIBER OCTAVUS, 5장9)

SEARCH

MENU NAVIGATION