라틴어 문장 검색

Quid sit tetragonus, quid forma triangula, quid sit Mensura triplici clausum, quid sterion aut quid Circumducta sua describat linea centro;
(ALANUS DE INSULIS, ANTICLAUDIANUS, LIBER TERTIUS 16:9)
Qua racionis ope sibi forma triangula formam Repperit equalem;
(ALANUS DE INSULIS, ANTICLAUDIANUS, LIBER TERTIUS 16:15)
Solidum est quando non longitudines modo et latitudines numeri linearum efficiunt, sed etiam extollunt altitudines, quales sunt ferme metae triangulae quas pyramidas appellant, vel qualia sunt quadrata undique, quae, κύβουσ illi, nos quadrantalia dicimus.
(아울루스 겔리우스, 아테네의 밤, A. Gellii Noctium Atticarum, Liber Primus, XX 4:1)
Et haut scio an in ipsius Boetii operibus corrigendis constantior esse studuerim Boetio ipso, cum variationem rerum illum amasse non solum easdem sententias eloquendi maxima varietas testetur, sed etiam quod promiscue scripsisse eum maxime et verisimile triangulus et triangulum, pyramidam et pyramidem, atomon latinis, κολουρον graecis litteris, similia.
(보이티우스, De Arithmetica, Prefationes, Praefatio Editoris 5:9)
Si enim numeros tollas, unde triangulum vel quadratum vel quicquid in geometira veratur, quae omnia numerorum denominitiva sunt?
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:28)
At vero si quadratum triangulumque ustuleris omnisque geometria consumpta sit, trest et quattuor aliorumque numerorum vocabula non perhibunt.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:29)
Si enim ponatur hic ordo i ii iiij viij xvi xxxii lxiiij una erit sola meidetas, id est viij, qui viij summae totius pars est octava, et sibi ipsi ad denominationem quantitatemque converitur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 14:2)
Obtinet autem, quae illi quoque recipiunt, quod quaedam partes eius respondent denominanturque secundum genus suum ad propriam quantitatem, ad similitudinem scilicet pariter paris numeri, aliae vero partes contrarium denominationem sumunt propriae quantitatis, ad pariter inparis scilicet formam.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:10)
Inaequalis vero quantitatis gemina divisio est. Secatur enim quod inaequale est in maius atque minus, quae contraria sibimet denominatione funguntur.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 2:1)
Quod si conversos superparticulares aliquis secundum haec praecepta convertat, continuo videat superpartientes adcrescere et ex sesqualtero quidem superbipartiens, ex sesquitertio supertripartiens procreatur et ceteri secundum communes denominationis species sine ulla ordinis interpolatione nascentur.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 28:2)
Figurae de quattor modi ut polygona varas in triangulis resolviatur
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 1:1)
Plana vero superficies in numeris invenitur, quotiens a tribus inchoatione facta addita descriptionis latitudine insequentium se naturalium numerorum multitudine anguli dilatantur, ut sit primus triangulus numerus, secundus quadratus, tertius qui sub quinque angulis continetur, quem pentagonum Graeci nominant, quartus exagonus, id est qui sex angulis includitur et ceteri eodem modo singillatim per naturalem numerum angulos augeant in plana scilicet descriptione figurarum.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:1)
Et omnis triangularis figura vel tetragoni vel pentagoni vel exagoni vel cuiuslibet, qui pluribus angulis continetur, si a medietate per singulos angulos lineae producantur, tot eum dividunt trianguli, quot ipsam figuram angulos habere contigerit.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:4)
At vero triangula figura, cum eam quis ita diviserit, in alias figuras non resolvitur, nisi in se ipsam.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:7)
In tria enim triangula dissipatur.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:8)

SEARCH

MENU NAVIGATION