라틴어 문장 검색

Solidum est quando non longitudines modo et latitudines numeri linearum efficiunt, sed etiam extollunt altitudines, quales sunt ferme metae triangulae quas pyramidas appellant, vel qualia sunt quadrata undique, quae, κύβουσ illi, nos quadrantalia dicimus.
(아울루스 겔리우스, 아테네의 밤, A. Gellii Noctium Atticarum, Liber Primus, XX 4:1)
Hinc aequalia sunt tempora quibus corpus unum de loco A cadendo provenit ad centrum S, & corpus aliud revolvendo describit arcum quadrantalem ADE.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 36:2)
Unde datur tum tempus descensus de loco quovis ad centrum, tum tempus huic aequale quo corpus uniformiter circa centrum globi ad distantiam quamvis revolvendo arcum quadrantalem describit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 38:4)
Ee, Ff, Gg, spatia aequalia perbrevia per quae puncta illa motu reciproco singulis vibrationibus eunt & redeunt;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:5)
Per hujus circumferentiam totam cum partibus suis exponatur tempus totum vibrationis unius cum ipsius partibus proportionalibus;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:10)
Hac lege punctum quodvis E eundo ab E per [epsilon] ad e, & inde redeundo per [epsilon] ad E iisdem accelerationis ac retardationis gradibus, vibrationes singulas peraget cum oscillante Pendulo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:12)
& propterea vis acceleratrix lineolae Physicae [epsilon][gamma] est ut ipsius distantia a Medio vibrationis loco [Omega].
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:5)
Hinc patet quod numerus pulsuum propagatorum idem sit cum numero vibrationum corporis tremuli, neque multiplicatur in eorum progressu.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 47:2)
Nam stantibus quae in Propositione superiore constructa sunt, si linea quaevis Physica, EF singulis vibrationibus describendo spatium PS, urgeatur in extremis itus & reditus cujusque locis P & S, a vi Elastica quae ipsius ponderi aequetur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:1)
peraget haec vibrationes singulas quo tempore eadem in Cycloide, cujus Perimeter tota longitudini PS aequalis est, oscillari posset:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:2)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
Sed tempore vibrationis unius ex itu & reditu compositae, pulsus progrediendo conficit latitudinem suam BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:16)
Corporis, cujus tremore pulsus excitantur, inveniatur numerus Vibrationum dato tempore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 54:1)
Et diviso arcu quadrantali AC in particulas innumeras aequales Pp &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:13)
tempore autem toto CPA, velocitates genitae erunt ad invicem ut rectangulum ½SP × CA & triangulum SCG, sive ut arcus quadrantalis CA ad radium SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:22)

SEARCH

MENU NAVIGATION