라틴어 문장 검색

Stellae autem istae non in capite tauri sunt, ut Tiro dicit, nullum enim videtur praeter eas stellas tauri caput, set hae ita circulo qui zodiacus dicitur sitae locataeque sunt, ut ex earum positu species quaedam et simulacrum esse videatur tauri capitis, sicuti ceterae partes et reliqua imago tauri conformata et quasi depicta est locis regionibusque earum stellarum quas Graeci Πλειάδασ, nos Vergilias vocamus.
(아울루스 겔리우스, 아테네의 밤, Liber Tertius Decimus, IX 7:1)
quibus addere oportet accelerationem temporis.
(FRANCIS BACON, NOVUM ORGANUM, Liber Secundus 486:15)
superata omni ea resistentia, vis redundans accelerationem motus sibi proportionalem, partim in partibus Machinae, partim in corpore resistente producet.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 41:6)
& Resistentis reactio ex ejus partium singularum velocitatibus & viribus resistendi ab earum attritione, cohaesione, pondere & acceleratione oriundis;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 41:11)
vis autem altera IT, secundum corporis cursum agendo, tota accelerabit illud, ac dato tempore quam minimo accelerationem generabit sibi ipsi proportionalem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:14)
Proinde corporum in D & I accelerationes aequalibus temporibus factae (si sumantur linearum nascentium DE, IN, IK, IT, NT rationes primae) sunt ut lineae DE, IT:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:15)
accelerationes, in cursu corporum per lineas DE & IK, sunt ut DE & IT, DE & IK conjunctim, id est ut DE quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:18)
Sed rectangulum IT × IK aequale est IN quadrato, hoc est, aequale DE quadrato & propterea accelerationes in transitu corporum a D & I ad E & K aequales generantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:20)
manifestum est quod corporis acceleratio huic vi acceleratrici proportionalis sit singulis momentis ut longitudo TX, id est, ob datas CV, WV iisq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:5)
Pendulis igitur duabus APT, Apt de perpendiculo AR inaequaliter deductis & simul dimissis, accelerationes eorum semper erunt ut arcus describendi TR, tR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:8)
Sunt igitur accelerationes atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:11)
si vires absolutae diversorum globorum ponantur inaequales, accelerationes temporibus aequalibus factae, erunt ut vires.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 37:2)
Proinde cum haec sit ut via describenda TR, accelerationes corporis vel retardationes in Oscillationum duarum (majoris & minoris) partibus proportionalibus describendis, erunt semper ut partes illae, & propterea facient ut partes illae simul describantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 45:3)
Hac lege punctum quodvis E eundo ab E per [epsilon] ad e, & inde redeundo per [epsilon] ad E iisdem accelerationis ac retardationis gradibus, vibrationes singulas peraget cum oscillante Pendulo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:12)
partes fluidi non prius perseverabunt in motibus suis sine acceleratione & retardatione, quàm sint eorum tempora periodica ut quadrata distantiarum à centro vorticis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 25:4)

SEARCH

MENU NAVIGATION