장음표시 사용
441쪽
TOMO I. CONTENTORUM.tates, s 4 i. ct seqq. quod sit sectio co
nica, la, maxima applicata, i. 66. osculator circulus, 3 13. quadratura, ar6. seqq. rectificatio, I 72. subtangen. , as.
Ellipsis Apolloniana . f. Fa 2. Ellipses infinita. Definitio, f. Ieth. maxima applicata, i. 66. sub normalis, o.
Elliptoides. Des nitio, f s 12. cubicales, ibid.biquadratica , ibid. ityelois. Definitio, f. II 6. superior, ibid. inferior, ibid. Error in metiendis altitudinibus admissus quomodo aestimetur , t. 76. θ seqq. in metiendis distantiis admissus quomodo
aestimandus, s 8. O seqq. 66. O seqq.
Evoluta, i. 313. Examen quomodo differat a demonstra
Examen additionis , a. ro I. ct seqq.
multiplicationis, 112. di .isionis, II 6. extractionis radicum, 189. angulorum rite dimen rum I. I s I. Experientia quid sit, c. 34. ejus objectum, 33. quomodo Mathematici circa eam versentiir, 36, 37. Exponens dignitatis. Definiti O. a. as . Exponens rationis. Definitio , a. l3 ς. quando sit terminus primus, II 8. quomodo se habeat ad unitatem. IA Q. quomodo exprimatur, I I. Eaponens rationis potentiarum qualis sit,
tensionis notio, g. 2. Extractio radicis quadratae, a. 169. σ fieri. Extractio radicis cubica, a. 28 2. er seqq. tractio radicis ex dignitate. Definitio, a ε. Extractio radicis ex linea recta . g. 333.
tractio radicis ex aequatioue quadrat, Itea, f. rq . cubica. 368. hi quadratica, 3 62. quacunque per approximationem, 3s . or seqq. ex serie infinita. 366. Extractio radicis ii. determinata, 93. seqq.
FActum. Definitio, a. ες. ex quoto in
Facta quales numeri, III. aequalium factorum, a I. 2O8.
Facti Logarithmus, 3 7. Factores. Definitio, 66. Factorum re e scientium quando eadem
Familia curvarum. Definitio, f. 333. Figura. Desinitio , g. 31. 33. in campo designatio. 369. Figura aequiangula, Io s.
aquilatera , 83. circulo inscripta , I s. circulo circumscripta , III. curvilinea, 37. Figura irregularis. Definitio , Ic6. constructio , 3 '. 36O. 361. Figura mixtilinea, 36. multilatera , IC4. ob iquangula , 9 7. plana, 36. Figura polygona , Οε. quadrilatera , 97.
Figura rectilinea. Definitio, 3 . diui so in
partes aequales, A I. Figura regularis. Definitio, I s. proprietateS , 368. o I. quomodo circulo i scribatur, 3 2. Figura rectangula, y T. Figura congruentes quales sint, II Figura inter se aquiangula, Io'. aquilatera, I 8 Figura similes quales sint, TF. I7s. ea rum ratio, εο 6. circulo inscriptarum de eircumscriptarum ratio, 4 8
Fluidi quantitatem in dolio non pleno,
determinare . 6 o. Fluxio. Definitio , ι. s. signum, viaricas. Definitio, f sys.
442쪽
Focus Parabola. quomodo inveniatur, f. 396. seqq. Propricrates, 4 8. To us Ellipsis quomodo inveniatur, εσ3.
proprietates . 434. ST. 4 8. Focus Hype, bolae quomodo inveniatur,4s 3. Proprietates. 66 . 46 F. 4 D. Sos. so . Fractio. Definitio. a. 38. scriptio, Sp. 6 Q. quando integro major, minor , eidem aeqitalis , 22 l. quaenam major, minor alcera, at S. quomodo ad minores terminos reducatur , 13 I. ct seqq. quin modo ad eandem denominationem, 23 s. quomodo in aliam datae denominationis convertatur , Io . Fractionis Logarithmus quomodo in v niatur, I si. seqq. quomodo valor ad communem mensuram reducatur, 3 4. Fractiones quanam aequales, a. 21 . quod sint rationes , 29.
Tructionum algorithmus, 1 6.137. 3 9. seqq. 143. identitas unde colligatur,2 26. reductio ad alias aequales , 227. in infinitum certa lege decrescentium sum ma quomodo inveniatur , i 334. Fractio decimalis. Definitio, a. 36 I. scriptio, 3 os. 36 q. 63. logarithmus quo. modo inveniatur, 366. 368. quomodo alia ad eam reducatur, 3 s. Fractio decimalis exucta. Definitio, 3 o. Fructio decimalis approximans. Definitio, 37Ο. Fractionum decimalium algorithmus, 373.
Fractiones sexagesimules. Definitio, 38 . algorithmus. 39t. σ seqq. quomodo scribantur, 387. Fractio spuria quaenam dicatur, 112. qu modo ad Integra reducatur, 123.
Eometria. Definitio, g. I. sublimior. Definitio, ' 3s . Geometrice proportionalia quaenam dican
Gradus. Definitio , g. 4 r. inaequalitas in circulis inaequalibus, a.
HArmonica proportio. Definitio, f. lHarmonice proponionalium inventio, i 87. c seqq. Helix, f. 369.
Heptagonum. Definitio, g. Io . Heterogenea qua nam sint, a. 32. H aEdrAm. Definitio, g. 47 F. quomod sphaerae inscribatur, f. 3o . sphaerae inscribendi latus quomodo inveniatur . 3o a. hujus ad sphaerae semidiametrum ratio ,3εε. Hexagonum. Definitio , r. I q. Hexagonum regatare quomodo construais tur , 33 3. quomodo circulo inscrib tur, 3 37. Homogenea quaenam sint, a. 32.
'perbola. Definitio, f 19. descriptio .
ΑΤΙ. Α h. quod sit sectio conica. 3r I. quadratura, i. IIo. 123. rectificatio , I s. ιγ'. subtangens, 27. circulus eam osculans, 3a . recta ad eam perpendicularis , Tq. T . Hyperbola intra ab totos constructio. f. 89. proprietates, 47 . ct seqq. subtangens, ι. 29. subnormalis, 41. quadratura, 12 I.
'perbola aequilatera. Definitio. sos. proprietates , Io6.σ seqq. descriptio, F t. s 3 2. Hyperbola Apolloniana quaenam dicatur .
Hyperbola infinita. Definitio, f Ar . sub-
tangens, i. 28. quadratura, II 3.
Hyperboloides. Definitio, f i s. Hypothenus. Definitio, g. yy.
Ionographia arearum quomodo perficienda , g. 3 6 3. O seqq. Icofaedrum. Definitio. g. s. constructio, FIT. quale corpus. 3 3 o. quomodo sphaerae inscribatur, L. 3ri. sphaerae inscribendi latus quomodo inveniatur, 3 I. huius ad semidiametrum sphaerae ratio, διε.
443쪽
Insqualia. Definitio, a. is . eorum ad se
Inclinatio plani ad planum. Definitio , g.
Incommensurabilia. Definitio, a. 3 r. ratio ad se invicem , i 6 s. io . quod dentur,
In directum situm quid fgnificet, g. 6 i. Infinitesima. Definitio , i. a. In initinomiam quomodo ad dignitatem
Insistere quando angulus dicatur, g. 36. Instramentum transportatorium quodnam& quale sit, g. I. IF Instrumenti transportatorii rectilinei conis structio , t. t. usus. 63. 44. Integrorum per fractiones divisio, a. 14s. ad fractiones reductio , 114. Inversio rationum, Is p. Irrationalium ad eandem denominationem, f. Sy. i 6. ad simpliciorem expressionem reductio, si . algoiit limus, 67. 68. ratio rationalis quomodo inveniatur , 6 Pudicium quando & quomodo acuatur studio Matheseos, c. II. I .
Lamellarum Neperianarum constructio,
Latus Coni. Definitio e. 467. Latus educere ex dignitate quid significet,
Latus figurae. Definitio, g. 3 s. quomodo quodlibet in figura rectilinea per calculum eruatur, t. 2.
Latus hexagoni regularis quomodo se habeat ad radium circuli circumscripti,g. M6. Latus numeri polygoni. Definitio, f. aos. quomodo inveniatur, 1 3. Latus pentagoni regularis quomodo ex data diagonali inveniatur. f. 29 Latus postgoni regularis circumscripti quomodo ex latere inscripti inveniatur, g 424
Latus potentia. Definitio, a. 2 2. Latus quadrati parallelogrammo vel vian- Rufo a qualis quomodo ii venia tu Q. 3 9 1.Latus rectum. D finitio, f. , 88. transversum. Di fiuitio, AF9. Latera bom toga quaenam dicantur, g. mo. Lari ra pi l nonorum regularium in fractioisil. bu decimalibus radii, g, 47. Limites aquationis quomodo inveniantur,f. 316. Linea. Definitio , g. Io. termini, I. proprietas, I 1. M. usus, 4. quamam brevissima inter duo puncta , I9 . Linea, pars digiti, I . Linea earva. Definitio, g. 23.
Linearum congruentia , 63. Linea convergentes. Definitio, 83. unde convergentia colligatur. 161. 16η.
Linea divergentes. Definitio, 8 . unde divergentia colligatur, 16 I. Linea normalis, 78. obliqua , 8O. Linea par ilesu. Definitio, g. 8 I. quom do alteri ducatur. 2 8. Linearum par Eclarum symptomata, 13 o.
Liηea perpendicularis. Definitio, 78. quam do sit, I p. quomodo ducatur. Linearum proportionalium inventio, g. 27 I. sqq. I. 338. duarum mediarum in continua proportione inventio, L62 . proprietates, g 3Tr. 478. Linea reciprocae. Definitio, f asI. quom do inveniantur, rε i. o f q. Linea recta. Definitio. g. II. differentia ab alia, t8. quomodo gignatur, I s. ducatur , i I. bisecetur, 2Io. in partes aequales, 27 . proportionales dividatur, IT . quomodo inedia & extrema ratione secetur, f. I 8. quomodo eam metiamur, g. 26. O seqq. quando cen- oro applicata in peripheria terminetur, t 73.
Linearum rectaram sectio qualis sit, g. 2 o. congruenti , t 63. σ seqq.
444쪽
Linea recta ad planum perpendicularis. De- l Logistica linea. Vide Logarithmica. finitio. 436. l Logistici solidi ubatio. i. 17 . σ siqq. Linea secantium. Des nitio, f. 36 a. proprietates, I 63.
Linea sinuam. Definitio, I 6 o. proprietates, I 6 i. Linea tangentium. Definitio, IGI. pr prietates , 63. Locus geometricus. Definitio, f. 384. planus, 38 .slidus, F 83. primi, secundi, tertiadec. ordinis, 1 3s. Locas ad circulum. Dc finitio, 384. constructio, s89. Locus ad rectam. Definitio, 314. constructio, s 86. Locus ad ellipsin quomodo construatur, 338. Lrcus ad hyperbolam quomodo construatur, 39o. 9ι. Locus ad parabolam quomodo construa-
Logaritbmica. Definitio, f. s s a. proprie tates , I 34. seqq. circulus osculator, i. q*2. quadratura, I 34. σ seqq. aT . σ seqq. rectificatio , i I. sub normatas, 18 o. subtangens , 36. δεν. Logaritimi. Definitio, a. 3Iq. proprietat , 3 37. seqq. quomodo fuerint com- Putati , 3 6. quomodo in Logarithmica , 31 . in Hyperbola, La 6. per arcus tractoriae repraesententur , λ 3. quomodo inveniantur, 1 s. quomodo eisdem respondentes numeri invenianis tur, Iso. differentiri quomodo integretur. 1 66 Logarithmorum Canonis constructio, a. 346. Logarithmus Operbolicus binarii. i. 1 T. Loguisbmus secantis quomodo inveni tur , t. 3O. Logarithmus sinus quomodo inveniatur,
Logarisbmus tangentis quomodo inveniatur, t. 29. i. a 62.
Logistica sipeciosa. Definitio. f. r.
I VI majoritas unde colligatur, 89. 9 P. eius fgnum , 21. 23. 2o4. Maius. Definiti O , a. 2Ο.
Matbesis quomodo & quando judicium
acuat, c. 63. 3 Maxima chorda in circulo, i. 6 g. 2 99. Maxima via minima an icata in curvis algebraicis quomodo teteriminetur, i. 63.
Media proportionalis linea quomodo inumniatur , g. 32 T. quomodo inveniantur duae in proportione continua, s 62q. Medii artihmetici inventio, a. l . Medius proportionalis numerus quinam diacatur, 1 36. quomodo inveniatur, 3 o I. Mensura. Definitio, I. 23, 26. Mensura anguli. Definitio, 37. quo radi describatur. I9. Mensura anguli ad peripheriam , 31
Harae. De finiit , Ii 8. Mensura linearum. Definitio, a s. divisio, 26. diversitas in diversis locis, χε. unius ad aliam reductio, I 3 o. ex qua materia fieri debeat, ra . o Ieqq.
Mensura numeri, communis, maxima , communis maxima. Definitio, a. 77. 78. communis maxima quomodo inveni tur , 228. 13 .
Mensura solidi. Definitio , g. 477. Mesiluarishmus, i. . Methodus mathematio. Definitio, e. Tacur ita dicatur, β 2. sorma . 2. I 3. εω I s. ab objectionibus vindicata, 1 I.
Methodi tangentium inversa exempla, 186.
Metiri quid fgnificet in Geometria, g. 3 quia Disiligod by Corale
445쪽
Minuendus numerus quinam dicatur, a. c . Atinus. Desinitio . a. a . unde colligatur, 89. so. 2 s. signum , 21. 13.
Minutiae physicales. a. 38 I. Minutum primum, secundum fleo. Definitio, a. 38 S. Minutum primum, secundum 3cc. gradus g. r. qualis sit fractio , 43. Miraculosa in definitionibus geometricis admittenda, g. 669. Italia. Definitio , a. 7.-ltiplicatio. Definitio , a. 66. quid sit. s . signum, 68. regulae, III. III. il .
Multiplicandus. Definitio, 66. Multiplicator , 66. Multitudo. Definitio . 8.
Nomen rationis . a. 36. Normalis linea. Definitio , g. 78.
Nota fractionum decimalium. Definitio,
Notio. Definitio, c. 4. differentia , s. σseqq. qualis in definitionibus mathem licis admittatur. II. σ seqq. Notio adaequata. Definitio, c. I o. gradus,
Notio clara. Definitio, s. divisio, 8. 9.eonfusa , 9. distinat. Definitio, s. divisio , Io.
Numerare quid in Arithmetica significet,
Numerandi lex, 44. 46. Numerus. Definitio, i o. σ seqq. quomodo scriptus enuncietur, s. quomodo oce ulte scribatur, Sy. F4. Numeri compositi inter se. Definitio, a. 8 .
Numeri eati cur in divisione & multipli- 433eatione non debeant tisse homogenei,
Numeri heterogenei inter se , 3 S. 3 6. homogenei, 36. meri primi inter se , a. 3 9. Numerorum nomina, 4s. 47. 43. notae, P. F . progressio, So. Numeras abstractus quinam, a. 34. anguloram. Definitio , f. 2os.
compositus , a. 7 c. eoncretus, δε- Numerus cubicur. Des nitio, a. 248. genesis , a 6. σ βeqq. tabulae horum numerorum quomodo construantur,s 3 1. Numerus determinatus, a. II.σabilis. ι'. fractus , 38. Numerus beptaronus. Definitio . f. aos. quomodo inveniatur , 2II. summatio,
Numerus hexagonas. Definitio. Ioc. qu modo inveniatur. 1 r. summatio, 2I1. Numerus indeterminatus, a. I 3. Defabilis . 4 . Numerus integer. Definitio, 37. quid e primat , I 39. quando radicem perfectam non habeat, 29y. 29 . Numerus irrationalis. De finiti , a. I. per lineas expressio , g. 41 o. f. 6IO. Numerus impar. Definitio, a. 72. Propri tates & symptomata, f. 72 σ seqq. Numerus numerans , a. 33. 34. numeratus , 33. Numerus octogonus. Definitio, f. I s. quo mcido inveniatur, et i I. summatio, a II. Numerus par. Definitio, a. 7 h. proprietates & symptomata, f. 7. seqq. Numerus pentagonas. Definitio , f. 1 οὐ quomodo inveniatur, a I i. summatio,
Numerus perfectus quinam si & quomodo inveniatur, f. 148. Numerus polygonus. Definitio, Io K. qu modo inveniatur, 1 IO. summetur, kII.
446쪽
Numerus primus in se, s. Numerus pronicus. Dc finitio, f. I96. quOmo lo inveniatur , I98. Numerus p ramidalis primus, secundu ς &e. triangularis , pentagonalis Sc. Definitio. f. 2 l . summata O, II 6. 2II. Numerus surdus, a. 63. Numerus triangularis. Definitio , f. Io 6. quomodo inveniatur, a II. summetur,
Numerorum prostertionalium symptomata analytice investigata, f. 17 3. seqq.
Obliqua linea. Definitio , g. 8Ο.
Oblcrium. Definitio, io o. construinctio, 339 Octa8drum. Definitio, g. 47 s. constructio, sic. quale corpus, 33 o. quomodo sphaerae inscribatur,f sor. latus sphaerae inscribendi quomodo inveniatur, 3 3. hujus ad radium ratio, 314. Octogonum. Definitio , g. IO . Octogoni regularis latus quomodo inveniatur, L 272. Opponi quaenam dicantur, g. 8S. 8s.
Ordinatim applicatae. Definitio, o. ordo Mathematicorum an iure taxetur,
Ordo nrtura quinam , 37. scholae quinam, 37. Oseulatio curvarum, L 3I4.
Parabola. Definitio, f. 388. constructio,
393. 4 P. 4. I. proprietates respectu axis, 3 so. 2 seqq. respectu diametri. 16. At . quod sit sectio Conica, s II. circulus osculator, i. 323. ad eam perpendicularis, t. 78. quadratura, IOI. IO . Im . 369. 3 o. rectificatio , 3 6.hυ ius dependentia a quadrat tira hyperbolae. 3 7. subnormalis, 3 6. subtan-
Parabola externa proprietas . f. 4l9. secundi generis rectificatio, i. I o. Parabola Apolloniana quaenam dicatur
Parabola infinita seu superiorum generum. Definitio, f. si'. coultructio, s8s. 38 . circuli osculatores, i. 32 . quadratura, IO F. Io O. rectificatio, i r. sub normalis, 37. sub tangens, χχ. quod sint sectiois nes conorum superiorum, s. a 8. Paraboloides cubicales, biquadratica 'es, sum desolidales dec. Definitio, f. Fi9. Parallela linea. Definitio, g. 8 . quomodo ducatur, a 8. symptomata , asy. seqq. 26O. Paralleloni constructio 3e usus, a s 8. 2 sy. Parallii igrammum. Definitio , g. Ioa. bisecti O, s. in partes aequales divisio, Α o. proprietates, 33S. 337. Parallelogramma quot nam sint, 3 I6. Parallelogrammorum ratio. 388. proprie tas, 388. aequalitas unde colligatur, 383. 38φ. 89. similium proprietates,
Parallelopipedum. Definitio, g. 462. pro Prietates , 463. q6q. descriptio in plano, Io. constructio, si A. bisectio, 37. I ii. supei scies & soliditas quomodo inveniatur, 36. Parallia pipedorum aequalitas unde colligatur, s. ratio, Tya. Oseqq. aequalium proprietas, ISo. simili uiri ratio,178. Parameter. Desὶitio , f. 388. Pars aliquanta. Definitio, a. I .Pars aliquota. Definitio, a. 3 .Partes. De sititio, a. 9. quando similes,
Partium similium ratio ad totum, Iro. inter se, 17 I. Penna optimae quaenam sint, g. II 3. Pentagonum. Definitio , to . Pentagoni regularis latus circulo inscribendi quomodo inveniatur,f. 179. Perimeter , g. 33. Per beria circuli, 37. AI. Permutatio rationum, a. 1 3. Perpem
447쪽
Perpendicularis linea. Definitio, g. 78. quomodo dicatur, a Io. 1ι 2. 216. symp- tomata re proprietates, a II. seqq.
Perpendicularis ad curvam quanta sit, ι.76. 8 . Perpendicularis ad parabolam, I. 78. Perpendicularis ad hyperbolam aequitate-
Perpendicularis ad hyperbolam scatenam,II. Pertica cubica, g. 677. quadrata, II 8. Perturbata ratio , a. I93. Pra, g. 1 F. eabicus , 677. . quadratus, II 8.
Planum , g 3 6. Planum plano parallelum , 498. ad planum perpendiculare, 69 . Plura. Definitio, a. 7. Polus conchm dis , f. 13 3. Polygonum. Definitio, g. Io . Potnonam regulare quomodo construatur , I. 3 32. t. 48 quomodo circulo inscribatur Ae circumscribatur, g. 333.3FF. t. s. quomodo circulus eidem circumscribatur, g. I 47. ejus ad circu- Ium inscriptum de circumscriptum reis
latio , 4is. proprietas, qe T. area quo modo inveniatur, qO1.4l6.
Polygonorum m. ilium proprietas, g. o 3.
Peθη omium quomodo ad dignitatem
quamcunque evehatur, L lo I. Postulatum. Definitio. c. 3 o. quaenam propristiones huc reserantur, 3 . Potentia. Definitio , a. a So. signa , 2 4. Iogarithmus , 33 9. quomodo prodeat,3 i. quomodo ex additione numerorum imparium procreetur, I . IT . III. Potentiarum proportio , a 9. 26 P. Potentia numerorum naturalium quaecunque quomodo seminentur , L 2 3. et S.
Potentia b perbola. Dcfinitio, f. 477.
quomodo determinetur, ψ S. θρqq. Potestas. Definitio, a. 13 o. signa, a 6. Practica Italica, a. 316. edi seqq. Prima, rectum, obliquum , triangulare, quadrangulare S c. Definitio g. 6. proprietates, 437. F8. in plano descriptio. IO. constructio, si s. sup ei sui es & s liditas quomodo inveniatur, Ssy. Primatum ratio, s a. seqq. aequalitas unde colligatur, sys.
Primatum aqualium proprietas, so. similium ratio, 78. Prismatis triangularis ad pyramidem reis ductio, ε . s s. ad parallelopipedum ratio, 38 Problema quale sit Se quibus constet par-ribus, c. 48. quomodo algebraice solvatur, f I I Problema Deliacum, s. 62 s. Problemata arithmetica, f. I 44. O seqq.atithmetica in determinata, ta 3 . oe seqq. geometrica aso. O seqq. geometrica indeterminata per Algebrain soluta',
Problematis A. pleriani se Iulio, ι. I93. Productism quid uicatur , a. 66. Progresso arithmetica. Definitio, a. 3 3. proprietates , f. Ios. summa quomodo
Pr resionis arithmeticae problemata per Algebram soluta, f. i64. seqq. Progressio geometrica. Definitio, a. 322. proprietates, L Ii 8. O seqq. summa
Progressionis geometricae problemata per Algebram soluta, f. i82. θ seqq.
Progressi,num geometricarum ab unitate incipientium proprietateS,L I 26. Proportio. Definitio ia. Is F. Proportio aquemultipllitum, 1 I9. Proportionum regulae, Io I. O seqq. Proportio continua. Definitio, 1. I 36. eontraharmonica, f. I93. discreta. a. Issa Proportionalitas quid sit, a. III.
448쪽
Proportis nates quantitates quaenam dicantur , t s. Propolaionis partes, c. 39. 4 O. Propositiones Elementi II. EUCLi DII ana.
lytice demonstratae , f. 86 σseqq.
Punctum. Definitio, g. c. theoria, T. 8. 9.Punctam flexus contrarii. Dc finitio, ι. Ol. quomodo derei minetur , 3 1. 3o9. Punctum regressu, 3 o I. Pyramis. Definitio, g. 472. proprietates,4 T . 474. in plano descriptio, F la. conisil ructio , sis. et . ad prisma triangulare reductio . F q. s. 34s. 6 6. su perfici es ac soliditas quomodo inveniatur, *8. i. ssi. 'ramidum aequalitas unde colligatur, g. 1 42. ratio, Tr. σ seqq. oramidum aqualium proprietas, 38O. similium ratio, 37S.
OUadratrix curvae , i. 234. Euadratrix Di Mos et naris. Definitio , f. 16 . sub tangens, i. s .
2uadratorum numerorum in serie naturalidit fetentiae , f. 8a. 83. quomodo sum entur, 1 o. quomodo duorum summa in duo alia quadrata dividatur, 13 .h garii limus, a. 8. Vid. numerus quadratu'. si uadratum. Definitio, g. 98. constructio. 338. area quomodo inveniatur, 3 o.
Suadratorum ratio ad se invicem, 37 additio , 4 y. ΔΤuadratiquadratum , a. 23 2. I uadrato-cubus, ibid.ωuadratocubocubus, ibid. Suadratoquadratam, ibid. Zuadratoquadratocubus , ibid.*κadratum cibi , ibid. vadratum Drdesolidi , ibid. daadrata reciproca quomodo construan- cur,s ad F. 286. i
uadrilateri circulo inscripti proprietas.
Euadrilateroram similium proprietas, D
Quantitas 'quid se, a. 23. I 4. quomodo ad dignitatem evehatur, as . f. 9 S. quomodo differentietur, i. it. σ seqq. tuantitatum signa , a. 37. 38. Quantitatum permutatio quomodo inve
ctuantitas afrmativa, f. I s. Suantitas constans. Definitio, f. 3 s. lignum , 376. Zuantitas exponentialis. Definitio, i. 1 ε .s gnum, a 6 s. constricto, 268. Puantitas infinite parva. Definitio , 1. quando habeatur pro nulla 4 3. Euantitas ηibilo major, f. ι 6.
tuantitas postiva. Definitio, f. II. quomodo prodear, t T. Euantitas privativa. Dc finitio, I s. quomodo prodeat, ε .ctuantitas variabi is . Di finitio, 37 s. stignum, 376. uantitates continue aequidissi rentes. Definit io, a. 3 13. proprietate , t M. Oseqq. Puantitates discretim a quidisserentes. De finitio, a. 322. proprietates, 42 sieqq. Zuantitates harmonice proportic nales. Dein finitio , f. l86. quomodo inveniantur.
Quantitates incommensurabiles num de
Euantitates positiva re privativae quando
se mutuo destruant, s. xl. num rati nem ad se invicem habeant, χε. Quantitates privativae quid sint, I9. 1 o. num inter se homogeneae , 23. quod positivis heterogeneae, 23. uartus aequidisserens numerus quomodo
inveniatur, a. t. Puartus proportis natis numerus quomodo inveniatur, 3 2.
449쪽
3 r. ad dividendum ratio , II . ex divisi e facti per facto iem unum Prodiens, aio. quando numerus rationalis, Is I. quando irrationalis, 61. ex
divisone radicis per radicem quando numerus integer, ast . Guori quando numeris divisis proporti
RAdius elacali. Definitio, g. 39. eorum
Radius circuli octogono regulari circumscribendi quomodo invenlatur , ITA. Radius circali decagono regulari circum. scribendi quomodo inveniatur,f. 278. Radius circuli parabolam osculaniis quomodo inveniatur, L 322. Radius curvedinis. Des nitio, L 3I . qu modo determinetur, 31 o. Radius evoluta. Definitio , i. 33 . Radias osculi. Definitio, i. si . quomodo determinetur, 3 o. Radix binomia. Definitio, a. 2 8. Radix cubica. Des nitio. a. a 8. ratio adcubum, 1 s. quomodo extrahatur,1 8 a.
Radix multinomia, a 8.ρο nomia, ibid. trinomia , ibid. Radix quadrata. Definitio , a. 14s. relatio ad quadratum, 167. quomodo ex trahatur, 169. o seqq. Radix aquationis. De hiratio, f. I q. quomodo transmutetur, 3 3 3. σ seqq. qu modo in falsam mutetur, 331. Radix aquationis vera . Is . fusa , Iimaginaria, 237. Radix pronica quonυ do extrahatur, I p. Radix ex aquatione biquadratica quom do extrahatur,f. 362. Radix ex eubica quomodo extrahatur, 3 FI. Radix ex quacunque per approximationem quomodo extrahatur, 363. o seqq. Radix ex quadratica quomodo extraha tur, I 43. Radix ex dignitate quomodo extrahatur,
Radix ex feris infinita quomodo extrahatur , f. 366. Radix ex quantitate irrationali eomposita quomodo extrahatur, 36 . Radices imaginaria quaenam dicantur, TI. Radices rationales ex quatione quomodo extrahantur,s 3 si. seqq. Radices universales quaenam dicantur, TO. Raditum extra bendarum theorema gen
Radicum signum . a. 29s. Radicum imaginariaram algori r limus,f l. Radicum quadratarum surdorum ratio , g.
Radicum universalium algorithmus, f. 7o. Ratio. Definitio, a. tas. termini , I 16. I 27. genera, 3 . Usus, 2 1. Ratioηum symptomata demonstrata, a.l6 9. o seqq. analytice investigata, f. II 4. Rationam identitas. Definiti O. a. t 9. o. natura, III. designatio, I r. I 3. unde colligatur, 168. IT T. Rationum similitudo in quo consistat, Is . unde colligatur, I 67. Ratio aqualitatis. Definitio, Igo. Ratio composita. Definiti . a. 1 9. eXp nens , 21 . quando una alteri aequalis, xi 8. Ratio dupla , I a. duplicata , IS9. II 6. inaequalitatis , I 3I. inaequalitatis majoris , I 32. Ratio inaqualitatis minoris. Definitio, tyris nomina quomodo inveniantur, I T. memoriae facile mandentur, I 68. Ratio irrationalis , I 4. 13 1. Ratio major, I 8. minor , ibid. multiplex , I 2. multiplex sup arti alaris , 4sis superpartiens , I 46.
450쪽
I squialtera , rq . sesquitertia, ibid. subdupla , I 41. subduplicata , II stasibmultiplex, 2. submultiplex subsaperparticularis, .βbmultiplex subsuperpartiens , I s. submultiplicata , 9. subquadruplicata , I '. subsesquitertia, 1 3. subsesquialtera, ibid. subsuperparticularis, ibid. subsuperpartiens, I 4 . subsuperρarticidaris , I s. sobtripla , t qa. subtriplicata , is 9.
triplicata, Is 9. 2Is. Ratio summa numerorum in infinitum cerea lege decrescentium ad totidem te minos maximo aequales, 3. 36 I. σ seqq. Recta. Vid. linea recta. Rectae in tres partes continue proportiOnales divisio , f. cos. Rectangulum. Definitio, g. I O. area quomodo inveniatur. 37s. Rectangulorum ratio . 376. Rectificatio curva. Definitio, i. rq . me. thodus, qq. Regula quale in lirumentum, g III. ex qua materia parari debeat, m. Regula aurea quaenam dicatur, a. IO7. Regula centralis BAREM , f. 623. Regula Conchoidis, s s. Regula de quinque, a. a. Regula Renaidiniana polygonum regulare circulo inscribendi confutata , f. 292. Regula Societatis, a. 3I . Regula trium sive de tri quaenam sit, 3o7. ubinam locum habeat, 3o7. usus in vita communi explicarus, 3οῖ. seqq. Regula triam composito, 3 i 2. 313. dire Ia , ἶI .
Residuum. Definitio, a. sq. Rbumbus. Definitio , r. 99. constructio, 3 o. area quomodo inveniatur, 387. Rhomboides. Definitio, ior. constructios At. area quomodo inveniatur, 387.
Scita geometrica constructio, g. 177.
Sebolion in Mathesi quid sit , e. s r. Scrupulum primum, secundum dec. g. 388.
Secans. Definitio, T. quomodo inveniatur,26. i. I 66. arcus multiplex quomodo inveniatur, f. 318. Secantium proprietates, g. 3 1. 3 3. ex eodem puncto ductarum relatio, 38 o. Secans complementi. Definitio. r. II.
Sectio circuli per reciam qualis, g. 2. per circulum qualis, s . Sectiones eo nisae. Definitio, f. quaenam sint, 387. σ seqq. Sectiones conica superio tum generum as 1 8. σ seqq. Sectio linearum. Definitio, g. . Sectio media o extrema ratione facta fas 8. Sectionis planorum theoria, g. 478. σ seqq.l Sectio rectarum mutua , F .l Sector circuli. Definitio, g. 46. ad trianguinium reductio, At s. area quomodo inveniatur, 43 s. i. Is . O seqq. Sectoru elliptici quadratura. i. iῖς. I92.bmerbolici quadratura, I 89. I96. Segmentum circuli, majus, minus. Definitio, g. 44. area quomodo inveniatur,
3 6. oe seqq. i. IT . Segmenti Jbarici soliditas quomodo inveniatur , i. 199.
Segmentum superficiei sphaerica quomodo
Semicirculorum sectio, g. Io I. Semidiameter. Definiti O, 39. Semiordinata. Definitio, f. 37. . Series convergentes. Definitio , f. r. divergentes , ibid.